Boundary-aware context neural network for medical image segmentation

计算机科学 人工智能 分割 卷积神经网络 判别式 棱锥(几何) 模式识别(心理学) 编码器 图像分割 背景(考古学) 联营 尺度空间分割 特征(语言学) 特征提取 计算机视觉 数学 生物 操作系统 哲学 语言学 古生物学 几何学
作者
Ruxin Wang,Shu‐Yuan Chen,Chaojie Ji,Jianping Fan,Ye Li
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:78: 102395-102395 被引量:143
标识
DOI:10.1016/j.media.2022.102395
摘要

Medical image segmentation can provide a reliable basis for further clinical analysis and disease diagnosis. With the development of convolutional neural networks (CNNs), medical image segmentation performance has advanced significantly. However, most existing CNN-based methods often produce unsatisfactory segmentation masks without accurate object boundaries. This problem is caused by the limited context information and inadequate discriminative feature maps after consecutive pooling and convolution operations. Additionally, medical images are characterized by high intra-class variation, inter-class indistinction and noise, extracting powerful context and aggregating discriminative features for fine-grained segmentation remain challenging. In this study, we formulate a boundary-aware context neural network (BA-Net) for 2D medical image segmentation to capture richer context and preserve fine spatial information, which incorporates encoder-decoder architecture. In each stage of the encoder sub-network, a proposed pyramid edge extraction module first obtains multi-granularity edge information. Then a newly designed mini multi-task learning module for jointly learning segments the object masks and detects lesion boundaries, in which a new interactive attention layer is introduced to bridge the two tasks. In this way, information complementarity between different tasks is achieved, which effectively leverages the boundary information to offer strong cues for better segmentation prediction. Finally, a cross feature fusion module acts to selectively aggregate multi-level features from the entire encoder sub-network. By cascading these three modules, richer context and fine-grain features of each stage are encoded and then delivered to the decoder. The results of extensive experiments on five datasets show that the proposed BA-Net outperforms state-of-the-art techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
彭于晏应助继续加油吧采纳,获得10
刚刚
不是山谷发布了新的文献求助10
刚刚
光亮的向南完成签到,获得积分10
刚刚
小二郎应助冷酷的绿旋采纳,获得10
刚刚
Dr.Lee完成签到 ,获得积分10
刚刚
1秒前
hkh发布了新的文献求助10
1秒前
jfeng发布了新的文献求助10
2秒前
辣椒酱发布了新的文献求助10
3秒前
旺旺旺发布了新的文献求助10
3秒前
4秒前
4秒前
稳重芷巧发布了新的文献求助10
5秒前
学习ing发布了新的文献求助10
5秒前
脑洞疼应助哲炜采纳,获得10
5秒前
6秒前
7秒前
氿瑛完成签到,获得积分10
8秒前
小马甲应助77采纳,获得10
8秒前
Yy发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
爱莫发布了新的文献求助10
11秒前
赵宝正发布了新的文献求助10
12秒前
12秒前
自由的水绿完成签到 ,获得积分10
13秒前
13秒前
小墨墨完成签到 ,获得积分10
13秒前
14秒前
14秒前
北辰发布了新的文献求助10
15秒前
无私糖豆发布了新的文献求助10
15秒前
有魅力的猫咪完成签到,获得积分20
16秒前
斯文静竹完成签到,获得积分10
16秒前
Fe2O3发布了新的文献求助10
17秒前
Ding应助辣椒酱采纳,获得10
17秒前
17秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009834
求助须知:如何正确求助?哪些是违规求助? 3549753
关于积分的说明 11303647
捐赠科研通 3284309
什么是DOI,文献DOI怎么找? 1810591
邀请新用户注册赠送积分活动 886367
科研通“疑难数据库(出版商)”最低求助积分说明 811406