已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Boundary-aware context neural network for medical image segmentation

计算机科学 人工智能 分割 卷积神经网络 判别式 棱锥(几何) 模式识别(心理学) 编码器 图像分割 背景(考古学) 联营 尺度空间分割 特征(语言学) 特征提取 计算机视觉 数学 生物 操作系统 哲学 语言学 古生物学 几何学
作者
Ruxin Wang,Shu‐Yuan Chen,Chaojie Ji,Jianping Fan,Ye Li
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:78: 102395-102395 被引量:181
标识
DOI:10.1016/j.media.2022.102395
摘要

Medical image segmentation can provide a reliable basis for further clinical analysis and disease diagnosis. With the development of convolutional neural networks (CNNs), medical image segmentation performance has advanced significantly. However, most existing CNN-based methods often produce unsatisfactory segmentation masks without accurate object boundaries. This problem is caused by the limited context information and inadequate discriminative feature maps after consecutive pooling and convolution operations. Additionally, medical images are characterized by high intra-class variation, inter-class indistinction and noise, extracting powerful context and aggregating discriminative features for fine-grained segmentation remain challenging. In this study, we formulate a boundary-aware context neural network (BA-Net) for 2D medical image segmentation to capture richer context and preserve fine spatial information, which incorporates encoder-decoder architecture. In each stage of the encoder sub-network, a proposed pyramid edge extraction module first obtains multi-granularity edge information. Then a newly designed mini multi-task learning module for jointly learning segments the object masks and detects lesion boundaries, in which a new interactive attention layer is introduced to bridge the two tasks. In this way, information complementarity between different tasks is achieved, which effectively leverages the boundary information to offer strong cues for better segmentation prediction. Finally, a cross feature fusion module acts to selectively aggregate multi-level features from the entire encoder sub-network. By cascading these three modules, richer context and fine-grain features of each stage are encoded and then delivered to the decoder. The results of extensive experiments on five datasets show that the proposed BA-Net outperforms state-of-the-art techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曾诗婷完成签到 ,获得积分10
刚刚
wys发布了新的文献求助10
1秒前
TTTHANKS发布了新的文献求助10
4秒前
听宇完成签到,获得积分20
4秒前
三号技师完成签到,获得积分10
7秒前
伤心葫芦娃完成签到 ,获得积分10
11秒前
12秒前
星星完成签到,获得积分10
12秒前
泥泞o发布了新的文献求助10
16秒前
领导范儿应助青阳采纳,获得10
16秒前
5160完成签到,获得积分10
18秒前
乐研客完成签到,获得积分10
19秒前
21秒前
星星2完成签到,获得积分10
21秒前
FleeToMars完成签到 ,获得积分10
22秒前
小洁完成签到 ,获得积分10
22秒前
bji完成签到,获得积分10
24秒前
yige完成签到,获得积分10
25秒前
吃草草没完成签到 ,获得积分10
25秒前
27秒前
李晓萌发布了新的文献求助10
27秒前
天宇南神完成签到 ,获得积分10
27秒前
顾矜应助xxhxx采纳,获得10
27秒前
量子星尘发布了新的文献求助10
29秒前
hjc完成签到,获得积分10
32秒前
sailingluwl完成签到,获得积分10
33秒前
35秒前
Rae完成签到 ,获得积分10
37秒前
luster完成签到 ,获得积分10
37秒前
moonlight完成签到,获得积分10
38秒前
天使她男人完成签到,获得积分10
40秒前
小迷糊完成签到 ,获得积分10
40秒前
993494543完成签到,获得积分10
41秒前
42秒前
43秒前
lhq完成签到 ,获得积分10
44秒前
45秒前
Suttier完成签到 ,获得积分10
46秒前
xxhxx发布了新的文献求助10
48秒前
Yesyes完成签到,获得积分10
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573190
求助须知:如何正确求助?哪些是违规求助? 4659336
关于积分的说明 14724438
捐赠科研通 4599135
什么是DOI,文献DOI怎么找? 2524140
邀请新用户注册赠送积分活动 1494679
关于科研通互助平台的介绍 1464704