Boundary-aware context neural network for medical image segmentation

计算机科学 人工智能 分割 卷积神经网络 判别式 棱锥(几何) 模式识别(心理学) 编码器 图像分割 背景(考古学) 联营 尺度空间分割 特征(语言学) 特征提取 计算机视觉 数学 生物 操作系统 哲学 语言学 古生物学 几何学
作者
Ruxin Wang,Shu‐Yuan Chen,Chaojie Ji,Jianping Fan,Ye Li
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:78: 102395-102395 被引量:181
标识
DOI:10.1016/j.media.2022.102395
摘要

Medical image segmentation can provide a reliable basis for further clinical analysis and disease diagnosis. With the development of convolutional neural networks (CNNs), medical image segmentation performance has advanced significantly. However, most existing CNN-based methods often produce unsatisfactory segmentation masks without accurate object boundaries. This problem is caused by the limited context information and inadequate discriminative feature maps after consecutive pooling and convolution operations. Additionally, medical images are characterized by high intra-class variation, inter-class indistinction and noise, extracting powerful context and aggregating discriminative features for fine-grained segmentation remain challenging. In this study, we formulate a boundary-aware context neural network (BA-Net) for 2D medical image segmentation to capture richer context and preserve fine spatial information, which incorporates encoder-decoder architecture. In each stage of the encoder sub-network, a proposed pyramid edge extraction module first obtains multi-granularity edge information. Then a newly designed mini multi-task learning module for jointly learning segments the object masks and detects lesion boundaries, in which a new interactive attention layer is introduced to bridge the two tasks. In this way, information complementarity between different tasks is achieved, which effectively leverages the boundary information to offer strong cues for better segmentation prediction. Finally, a cross feature fusion module acts to selectively aggregate multi-level features from the entire encoder sub-network. By cascading these three modules, richer context and fine-grain features of each stage are encoded and then delivered to the decoder. The results of extensive experiments on five datasets show that the proposed BA-Net outperforms state-of-the-art techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ri_290完成签到 ,获得积分10
1秒前
Skyllne完成签到 ,获得积分10
2秒前
JamesPei应助森林采纳,获得10
3秒前
3秒前
5秒前
墨与白完成签到,获得积分10
6秒前
Blummer完成签到,获得积分10
6秒前
自然谷兰完成签到,获得积分10
7秒前
7秒前
呆萌芙蓉完成签到 ,获得积分10
8秒前
aster应助Marshall采纳,获得50
10秒前
森林完成签到,获得积分10
10秒前
apparate完成签到,获得积分10
10秒前
jiaovo发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助50
12秒前
爱科研的小虞完成签到 ,获得积分10
12秒前
111111发布了新的文献求助10
14秒前
14秒前
liliAnh完成签到 ,获得积分10
15秒前
15秒前
犹豫花卷完成签到 ,获得积分10
17秒前
li发布了新的文献求助10
20秒前
20秒前
20秒前
TCB完成签到,获得积分10
22秒前
繁星完成签到,获得积分10
23秒前
猪猪hero完成签到,获得积分0
25秒前
繁星发布了新的文献求助10
26秒前
科研大佬的路上完成签到 ,获得积分10
29秒前
举个栗子8完成签到 ,获得积分10
31秒前
wuxin完成签到,获得积分10
31秒前
欢喜可愁完成签到 ,获得积分10
33秒前
左一酱完成签到 ,获得积分10
34秒前
自信疾完成签到,获得积分10
35秒前
一路有你完成签到 ,获得积分10
37秒前
旷意完成签到,获得积分10
37秒前
zikk233完成签到 ,获得积分10
38秒前
yumi完成签到,获得积分10
42秒前
Yang22完成签到,获得积分10
43秒前
Hou完成签到,获得积分10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789508
求助须知:如何正确求助?哪些是违规求助? 5720453
关于积分的说明 15474748
捐赠科研通 4917316
什么是DOI,文献DOI怎么找? 2646909
邀请新用户注册赠送积分活动 1594535
关于科研通互助平台的介绍 1549079