Boundary-aware context neural network for medical image segmentation

计算机科学 人工智能 分割 卷积神经网络 判别式 棱锥(几何) 模式识别(心理学) 编码器 图像分割 背景(考古学) 联营 尺度空间分割 特征(语言学) 特征提取 计算机视觉 数学 生物 操作系统 哲学 语言学 古生物学 几何学
作者
Ruxin Wang,Shu‐Yuan Chen,Chaojie Ji,Jianping Fan,Ye Li
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:78: 102395-102395 被引量:97
标识
DOI:10.1016/j.media.2022.102395
摘要

Medical image segmentation can provide a reliable basis for further clinical analysis and disease diagnosis. With the development of convolutional neural networks (CNNs), medical image segmentation performance has advanced significantly. However, most existing CNN-based methods often produce unsatisfactory segmentation masks without accurate object boundaries. This problem is caused by the limited context information and inadequate discriminative feature maps after consecutive pooling and convolution operations. Additionally, medical images are characterized by high intra-class variation, inter-class indistinction and noise, extracting powerful context and aggregating discriminative features for fine-grained segmentation remain challenging. In this study, we formulate a boundary-aware context neural network (BA-Net) for 2D medical image segmentation to capture richer context and preserve fine spatial information, which incorporates encoder-decoder architecture. In each stage of the encoder sub-network, a proposed pyramid edge extraction module first obtains multi-granularity edge information. Then a newly designed mini multi-task learning module for jointly learning segments the object masks and detects lesion boundaries, in which a new interactive attention layer is introduced to bridge the two tasks. In this way, information complementarity between different tasks is achieved, which effectively leverages the boundary information to offer strong cues for better segmentation prediction. Finally, a cross feature fusion module acts to selectively aggregate multi-level features from the entire encoder sub-network. By cascading these three modules, richer context and fine-grain features of each stage are encoded and then delivered to the decoder. The results of extensive experiments on five datasets show that the proposed BA-Net outperforms state-of-the-art techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚心焦完成签到 ,获得积分10
刚刚
Zjing发布了新的文献求助10
1秒前
充电宝应助DE2022采纳,获得10
2秒前
㊣㊣发布了新的文献求助10
2秒前
meng发布了新的文献求助10
2秒前
4秒前
5秒前
Carole完成签到 ,获得积分10
5秒前
体贴冰棍发布了新的文献求助10
6秒前
6秒前
hy1234发布了新的文献求助10
6秒前
8秒前
xtingkk完成签到,获得积分10
8秒前
8秒前
Oracle应助滴滴滴采纳,获得50
8秒前
8秒前
科研通AI5应助优秀笑寒采纳,获得30
9秒前
大咸鱼关注了科研通微信公众号
9秒前
复杂羊青完成签到 ,获得积分10
9秒前
10秒前
10秒前
桐桐应助sudaxia100采纳,获得10
10秒前
mai发布了新的文献求助10
11秒前
满当当发布了新的文献求助10
11秒前
呆萌笑晴发布了新的文献求助10
11秒前
j7337发布了新的文献求助10
11秒前
12秒前
12秒前
Zjing完成签到,获得积分10
13秒前
开心的渊思完成签到 ,获得积分10
13秒前
NexusExplorer应助llllwwww采纳,获得10
13秒前
科研通AI5应助123采纳,获得10
14秒前
昏睡的蟠桃应助alison采纳,获得30
15秒前
DE2022发布了新的文献求助10
15秒前
16秒前
冯冯完成签到,获得积分10
16秒前
搜集达人应助j7337采纳,获得30
17秒前
漠之梦发布了新的文献求助10
17秒前
18秒前
19秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Evaluating the Cardiometabolic Efficacy and Safety of Lipoprotein Lipase Pathway Targets in Combination With Approved Lipid-Lowering Targets: A Drug Target Mendelian Randomization Study 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733061
求助须知:如何正确求助?哪些是违规求助? 3277252
关于积分的说明 10001195
捐赠科研通 2992903
什么是DOI,文献DOI怎么找? 1642490
邀请新用户注册赠送积分活动 780441
科研通“疑难数据库(出版商)”最低求助积分说明 748844