Boundary-aware context neural network for medical image segmentation

计算机科学 人工智能 分割 卷积神经网络 判别式 棱锥(几何) 模式识别(心理学) 编码器 图像分割 背景(考古学) 联营 尺度空间分割 特征(语言学) 特征提取 计算机视觉 数学 生物 操作系统 哲学 语言学 古生物学 几何学
作者
Ruxin Wang,Shu‐Yuan Chen,Chaojie Ji,Jianping Fan,Ye Li
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:78: 102395-102395 被引量:156
标识
DOI:10.1016/j.media.2022.102395
摘要

Medical image segmentation can provide a reliable basis for further clinical analysis and disease diagnosis. With the development of convolutional neural networks (CNNs), medical image segmentation performance has advanced significantly. However, most existing CNN-based methods often produce unsatisfactory segmentation masks without accurate object boundaries. This problem is caused by the limited context information and inadequate discriminative feature maps after consecutive pooling and convolution operations. Additionally, medical images are characterized by high intra-class variation, inter-class indistinction and noise, extracting powerful context and aggregating discriminative features for fine-grained segmentation remain challenging. In this study, we formulate a boundary-aware context neural network (BA-Net) for 2D medical image segmentation to capture richer context and preserve fine spatial information, which incorporates encoder-decoder architecture. In each stage of the encoder sub-network, a proposed pyramid edge extraction module first obtains multi-granularity edge information. Then a newly designed mini multi-task learning module for jointly learning segments the object masks and detects lesion boundaries, in which a new interactive attention layer is introduced to bridge the two tasks. In this way, information complementarity between different tasks is achieved, which effectively leverages the boundary information to offer strong cues for better segmentation prediction. Finally, a cross feature fusion module acts to selectively aggregate multi-level features from the entire encoder sub-network. By cascading these three modules, richer context and fine-grain features of each stage are encoded and then delivered to the decoder. The results of extensive experiments on five datasets show that the proposed BA-Net outperforms state-of-the-art techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活泼无敌发布了新的文献求助10
刚刚
脑洞疼应助一号采纳,获得10
1秒前
1秒前
1秒前
2秒前
jyylrl完成签到,获得积分10
2秒前
光轮2000完成签到 ,获得积分10
2秒前
3秒前
jixuchance完成签到,获得积分10
4秒前
liriyii发布了新的文献求助10
4秒前
花花发布了新的文献求助10
5秒前
5秒前
阿炳妹妹发布了新的文献求助10
5秒前
6秒前
6秒前
在水一方应助老实幻姬采纳,获得10
6秒前
浮游应助AA采纳,获得10
7秒前
制冷剂发布了新的文献求助10
7秒前
7秒前
郭正霄发布了新的文献求助10
7秒前
7秒前
8秒前
椿萱并茂完成签到 ,获得积分10
8秒前
赵苏程发布了新的文献求助10
8秒前
乐乐应助刘六采纳,获得10
9秒前
大个应助YufanZhang采纳,获得10
9秒前
9秒前
活力曼青完成签到,获得积分10
9秒前
10秒前
这瓜不卖发布了新的文献求助10
10秒前
Orange应助帅气蓝采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
Akim应助寒冷黎云采纳,获得10
11秒前
12秒前
健忘远山完成签到 ,获得积分10
12秒前
hanleiharry1发布了新的文献求助10
13秒前
Channing_Ho完成签到 ,获得积分10
13秒前
eric888应助辛勤的诗蕊采纳,获得50
14秒前
14秒前
顺利毕业完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097313
求助须知:如何正确求助?哪些是违规求助? 4309783
关于积分的说明 13428428
捐赠科研通 4137300
什么是DOI,文献DOI怎么找? 2266533
邀请新用户注册赠送积分活动 1269654
关于科研通互助平台的介绍 1205978