Efficient uncertainty quantification for dynamic subsurface flow with surrogate by Theory-guided Neural Network

不确定度量化 人工神经网络 替代模型 蒙特卡罗方法 流量(数学) 地下水流 计算机科学 数学优化 应用数学 算法 数学 机器学习 统计 工程类 岩土工程 几何学 地下水
作者
Nanzhe Wang,Hong Chang,Dongxiao Zhang
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:373: 113492-113492 被引量:41
标识
DOI:10.1016/j.cma.2020.113492
摘要

Subsurface flow problems usually involve some degree of uncertainty. Consequently, uncertainty quantification is commonly necessary for subsurface flow prediction. In this work, we propose a methodology for efficient uncertainty quantification for dynamic subsurface flow with a surrogate constructed by the Theory-guided Neural Network (TgNN). The TgNN here is specially designed for problems with stochastic parameters. In the TgNN, stochastic parameters, time and location comprise the input of the neural network, while the quantity of interest is the output. The neural network is trained with available simulation data, while being simultaneously guided by theory (e.g., the governing equation, boundary conditions, initial conditions, etc.) of the underlying problem. The trained neural network can predict solutions of subsurface flow problems with new stochastic parameters. With the TgNN surrogate, the Monte Carlo (MC) method can be efficiently implemented for uncertainty quantification. The proposed methodology is evaluated with two-dimensional dynamic saturated flow problems in porous medium. Numerical results show that the TgNN based surrogate can significantly improve the efficiency of uncertainty quantification tasks compared with simulation based implementation. Further investigations regarding stochastic fields with smaller correlation length, larger variance, changing boundary values and out-of-distribution variances are performed, and satisfactory results are obtained.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
猫好好完成签到,获得积分10
1秒前
1秒前
zhen发布了新的文献求助10
2秒前
Hohowinnie完成签到,获得积分10
2秒前
shain完成签到,获得积分10
2秒前
Kce完成签到,获得积分20
2秒前
cc发布了新的文献求助10
3秒前
今后应助Maple采纳,获得10
3秒前
3秒前
julian190完成签到,获得积分10
4秒前
天天快乐应助aging00采纳,获得10
4秒前
aabbb完成签到,获得积分10
4秒前
4秒前
阿盛完成签到,获得积分10
4秒前
YORLAN发布了新的文献求助10
4秒前
松子发布了新的文献求助10
4秒前
得得应助lfg采纳,获得30
5秒前
狂野猕猴桃完成签到 ,获得积分10
5秒前
5秒前
可爱的函函应助gdh采纳,获得10
6秒前
冷酷莫言完成签到,获得积分10
6秒前
6秒前
6秒前
科研小白发布了新的文献求助10
8秒前
8秒前
ste完成签到,获得积分10
8秒前
Leo发布了新的文献求助10
9秒前
zhanghuan发布了新的文献求助10
9秒前
Kelly完成签到,获得积分10
10秒前
所所应助勤奋的灵松采纳,获得10
10秒前
务实的又柔完成签到,获得积分10
10秒前
东北萧亚轩完成签到,获得积分10
10秒前
11秒前
DrD发布了新的文献求助10
11秒前
清脆安南发布了新的文献求助10
12秒前
12秒前
大佬发布了新的文献求助10
12秒前
12秒前
专注的语堂完成签到,获得积分10
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3467642
求助须知:如何正确求助?哪些是违规求助? 3060574
关于积分的说明 9072388
捐赠科研通 2750991
什么是DOI,文献DOI怎么找? 1509517
科研通“疑难数据库(出版商)”最低求助积分说明 697349
邀请新用户注册赠送积分活动 697295