An Exploration Into the Use of a Chatbot for Patients With Inflammatory Bowel Diseases: Retrospective Cohort Study

医学 炎症性肠病 回顾性队列研究 队列 聊天机器人 队列研究 内科学 万维网 计算机科学 疾病
作者
Aria Zand,Arjun Sharma,Zack Stokes,Courtney Reynolds,Alberto Montilla,Jenny Sauk,Daniël W. Hommes
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:22 (5): e15589-e15589 被引量:42
标识
DOI:10.2196/15589
摘要

Background The emergence of chatbots in health care is fast approaching. Data on the feasibility of chatbots for chronic disease management are scarce. Objective This study aimed to explore the feasibility of utilizing natural language processing (NLP) for the categorization of electronic dialog data of patients with inflammatory bowel diseases (IBD) for use in the development of a chatbot. Methods Electronic dialog data collected between 2013 and 2018 from a care management platform (UCLA eIBD) at a tertiary referral center for IBD at the University of California, Los Angeles, were used. Part of the data was manually reviewed, and an algorithm for categorization was created. The algorithm categorized all relevant dialogs into a set number of categories using NLP. In addition, 3 independent physicians evaluated the appropriateness of the categorization. Results A total of 16,453 lines of dialog were collected and analyzed. We categorized 8324 messages from 424 patients into seven categories. As there was an overlap in these categories, their frequencies were measured independently as symptoms (2033/6193, 32.83%), medications (2397/6193, 38.70%), appointments (1518/6193, 24.51%), laboratory investigations (2106/6193, 34.01%), finance or insurance (447/6193, 7.22%), communications (2161/6193, 34.89%), procedures (617/6193, 9.96%), and miscellaneous (624/6193, 10.08%). Furthermore, in 95.0% (285/300) of cases, there were minor or no differences in categorization between the algorithm and the three independent physicians. Conclusions With increased adaptation of electronic health technologies, chatbots could have great potential in interacting with patients, collecting data, and increasing efficiency. Our categorization showcases the feasibility of using NLP in large amounts of electronic dialog for the development of a chatbot algorithm. Chatbots could allow for the monitoring of patients beyond consultations and potentially empower and educate patients and improve clinical outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助达达利亚采纳,获得10
刚刚
刚刚
1秒前
1秒前
上官问寒完成签到,获得积分10
2秒前
明亮翠桃完成签到,获得积分10
2秒前
2秒前
2秒前
qqqq发布了新的文献求助10
2秒前
李爱国应助leehoo采纳,获得10
3秒前
111完成签到,获得积分10
3秒前
送外卖了完成签到,获得积分10
3秒前
南墙以南完成签到 ,获得积分10
4秒前
4秒前
大模型应助外向的铅笔采纳,获得50
4秒前
斯文的一刀完成签到,获得积分10
4秒前
5秒前
小二郎应助川川采纳,获得10
5秒前
Li发布了新的文献求助10
5秒前
Akim应助上官问寒采纳,获得10
6秒前
所所应助byb采纳,获得30
6秒前
清明完成签到,获得积分10
6秒前
6秒前
wanci应助不当脆脆鲨采纳,获得10
6秒前
bkagyin应助zby采纳,获得10
7秒前
言午发布了新的文献求助10
7秒前
8秒前
8秒前
131343完成签到,获得积分10
8秒前
wfy1227完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
流白发布了新的文献求助10
9秒前
小马甲应助MSY采纳,获得10
9秒前
上官若男应助xuanwu采纳,获得10
9秒前
Vickie发布了新的文献求助10
10秒前
zcj完成签到,获得积分10
10秒前
131343发布了新的文献求助10
10秒前
Pwrry完成签到,获得积分10
11秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3765463
求助须知:如何正确求助?哪些是违规求助? 3309974
关于积分的说明 10152973
捐赠科研通 3025346
什么是DOI,文献DOI怎么找? 1660499
邀请新用户注册赠送积分活动 793353
科研通“疑难数据库(出版商)”最低求助积分说明 755565