Deep Convolutional Neural Networks for Thyroid Tumor Grading using Ultrasound B-mode Images

卷积神经网络 分级(工程) 接收机工作特性 超声波 人工智能 计算机科学 模式识别(心理学) 放射科 医学 机器学习 工程类 土木工程
作者
Juntao Shao,Jingjing Zheng,Bing Zhang
出处
期刊:Journal of the Acoustical Society of America [Acoustical Society of America]
卷期号:148 (3): 1529-1535 被引量:11
标识
DOI:10.1121/10.0001924
摘要

The performances of deep convolutional neural network (DCNN) modeling and transfer learning (TF) for thyroid tumor grading using ultrasound imaging were evaluated. This retrospective study included input patient data (ultrasound B-mode image sets) assigned to the training group (115 participants) or testing group (28 participants). DCNN (ResNet50) and TF (ResNet50, ResNet101, ResNet152, VGG16, Inception V3, and DenseNet201), which trains a convolutional neural network that has been pre-trained on ImageNet, were used for image classification based on thyroid tumor grade. Supervised training was performed by using the DCNN or TF model to minimize the difference between the output data and clinical grading. The performances of the DCNN and TF models were assessed in the testing dataset with receiver operating characteristic analyses. Results showed that TF based on Resnet50 and VGG16 had better performance than DCNN (ResNet50) in differentiating thyroid tumor with areas under the receiver operating characteristic (AUCs) curve more than 0.8. However, TF based on ResNet101, ResNet152, InceptionV3, and Densenet201 had equal or worse performances than DCNN (ResNet50) in grading thyroid tumor with AUCs less than 0.5. TF based on ResNet50 and VGG16 had a superior performance compared to DCNN (ResNet50) model for grading thyroid tumors based on ultrasound images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Ryuki完成签到 ,获得积分10
2秒前
victor完成签到,获得积分20
3秒前
victor发布了新的文献求助10
6秒前
6秒前
老迟到的友容完成签到 ,获得积分20
7秒前
852应助化工渣渣采纳,获得10
7秒前
CR7应助曾建采纳,获得20
8秒前
9秒前
斯文香彤完成签到,获得积分10
9秒前
幸福大白发布了新的文献求助10
9秒前
爆米花应助victor采纳,获得10
11秒前
yx_cheng应助Sophia采纳,获得10
11秒前
11秒前
12秒前
12秒前
12秒前
忍蛙完成签到,获得积分10
12秒前
无所谓发布了新的文献求助10
13秒前
8458完成签到,获得积分20
15秒前
18秒前
高院士完成签到,获得积分10
18秒前
情怀应助8458采纳,获得10
18秒前
化工渣渣发布了新的文献求助10
19秒前
liuker应助fighting采纳,获得20
20秒前
ztt27999完成签到,获得积分10
20秒前
miao发布了新的文献求助10
20秒前
夹心小僧发布了新的文献求助20
22秒前
SYLH应助科研通管家采纳,获得20
23秒前
李爱国应助Q13采纳,获得10
23秒前
搜集达人应助科研通管家采纳,获得10
23秒前
斯文败类应助科研通管家采纳,获得10
23秒前
斯文败类应助科研通管家采纳,获得10
23秒前
wanci应助科研通管家采纳,获得10
24秒前
乐乐应助科研通管家采纳,获得10
24秒前
FashionBoy应助科研通管家采纳,获得10
24秒前
李健应助科研通管家采纳,获得10
24秒前
慕青应助科研通管家采纳,获得10
24秒前
王子安应助科研通管家采纳,获得50
24秒前
24秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993533
求助须知:如何正确求助?哪些是违规求助? 3534281
关于积分的说明 11265112
捐赠科研通 3274061
什么是DOI,文献DOI怎么找? 1806303
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809710