Deep Convolutional Neural Networks for Thyroid Tumor Grading using Ultrasound B-mode Images

卷积神经网络 分级(工程) 接收机工作特性 超声波 人工智能 计算机科学 模式识别(心理学) 放射科 医学 机器学习 工程类 土木工程
作者
Juntao Shao,Jingjing Zheng,Bing Zhang
出处
期刊:Journal of the Acoustical Society of America [Acoustical Society of America]
卷期号:148 (3): 1529-1535 被引量:10
标识
DOI:10.1121/10.0001924
摘要

The performances of deep convolutional neural network (DCNN) modeling and transfer learning (TF) for thyroid tumor grading using ultrasound imaging were evaluated. This retrospective study included input patient data (ultrasound B-mode image sets) assigned to the training group (115 participants) or testing group (28 participants). DCNN (ResNet50) and TF (ResNet50, ResNet101, ResNet152, VGG16, Inception V3, and DenseNet201), which trains a convolutional neural network that has been pre-trained on ImageNet, were used for image classification based on thyroid tumor grade. Supervised training was performed by using the DCNN or TF model to minimize the difference between the output data and clinical grading. The performances of the DCNN and TF models were assessed in the testing dataset with receiver operating characteristic analyses. Results showed that TF based on Resnet50 and VGG16 had better performance than DCNN (ResNet50) in differentiating thyroid tumor with areas under the receiver operating characteristic (AUCs) curve more than 0.8. However, TF based on ResNet101, ResNet152, InceptionV3, and Densenet201 had equal or worse performances than DCNN (ResNet50) in grading thyroid tumor with AUCs less than 0.5. TF based on ResNet50 and VGG16 had a superior performance compared to DCNN (ResNet50) model for grading thyroid tumors based on ultrasound images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
该睡觉啦完成签到,获得积分20
1秒前
1秒前
莫x莫完成签到 ,获得积分10
3秒前
loewy完成签到,获得积分10
3秒前
黄婷发布了新的文献求助10
3秒前
3秒前
yuan完成签到,获得积分10
3秒前
zho发布了新的文献求助10
3秒前
3秒前
苏苏完成签到,获得积分10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得80
4秒前
Hello应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
万能图书馆应助内向秋寒采纳,获得10
4秒前
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
思源应助科研通管家采纳,获得10
4秒前
zzzq应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得30
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
5秒前
soso应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
5秒前
orixero应助科研通管家采纳,获得10
5秒前
852应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
zzzq应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
hzauhzau发布了新的文献求助10
5秒前
5秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794