When Federated Learning Meets Blockchain: A New Distributed Learning Paradigm

计算机科学 单点故障 块链 差别隐私 原始数据 分布式学习 联合学习 数据共享 过程(计算) 分布式计算 计算机安全 服务器 人工智能 数据挖掘 万维网 操作系统 病理 医学 程序设计语言 替代医学 教育学 心理学
作者
Chuan Ma,Jun Li,Long Shi,Ming Ding,Taotao Wang,Zhu Han,H. Vincent Poor
出处
期刊:IEEE Computational Intelligence Magazine [Institute of Electrical and Electronics Engineers]
卷期号:17 (3): 26-33 被引量:166
标识
DOI:10.1109/mci.2022.3180932
摘要

Motivated by the increasingly powerful computing capabilities of end-user equipment, and by the growing privacy concerns over sharing sensitive raw data, a distributed machine learning paradigm known as federated learning (FL) has emerged. By training models locally at each client and aggregating learning models at a central server, FL has the capability to avoid sharing data directly, thereby reducing privacy leakage. However, the conventional FL framework relies heavily on a single central server, and it may fail if such a server behaves maliciously. To address this single point of failure, in this work, a blockchain-assisted decentralized FL framework is investigated, which can prevent malicious clients from poisoning the learning process, and thus provides a self-motivated and reliable learning environment for clients. In this framework, the model aggregation process is fully decentralized and the tasks of training for FL and mining for blockchain are integrated into each participant. Privacy and resource-allocation issues are further investigated in the proposed framework, and a critical and unique issue inherent in the proposed framework is disclosed. In particular, a lazy client can simply duplicate models shared by other clients to reap benefits without contributing its resources to FL. To address these issues, analytical and experimental results are provided to shed light on possible solutions, i.e., adding noise to achieve local differential privacy and using pseudo-noise (PN) sequences as watermarks to detect lazy clients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
从容的小土豆完成签到,获得积分10
2秒前
无花果应助柚子采纳,获得20
3秒前
regina完成签到,获得积分10
3秒前
3秒前
杨小鸿发布了新的文献求助10
3秒前
5秒前
我是老大应助傻傻的雅寒采纳,获得10
5秒前
森花完成签到,获得积分10
5秒前
子訡发布了新的文献求助10
6秒前
6秒前
CH完成签到,获得积分10
6秒前
李兴完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
kzf丶bryant发布了新的文献求助10
9秒前
vanilla完成签到,获得积分10
10秒前
10秒前
Chenly完成签到,获得积分10
12秒前
桐桐应助柚子采纳,获得10
13秒前
15秒前
16秒前
刘濮源发布了新的文献求助10
21秒前
Hello应助杨小鸿采纳,获得10
21秒前
想发好文章完成签到,获得积分10
22秒前
科研通AI6.1应助柚子采纳,获得10
23秒前
24秒前
26秒前
听闻韬声依旧完成签到 ,获得积分10
29秒前
刘振坤完成签到,获得积分10
30秒前
31秒前
31秒前
凶狠的半山完成签到,获得积分10
32秒前
JRG完成签到,获得积分20
32秒前
瞬间完成签到,获得积分10
33秒前
33秒前
35秒前
决明子完成签到 ,获得积分10
35秒前
希望天下0贩的0应助柚子采纳,获得10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742197
求助须知:如何正确求助?哪些是违规求助? 5407018
关于积分的说明 15344388
捐赠科研通 4883635
什么是DOI,文献DOI怎么找? 2625185
邀请新用户注册赠送积分活动 1574043
关于科研通互助平台的介绍 1530978