亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

When Federated Learning Meets Blockchain: A New Distributed Learning Paradigm

计算机科学 单点故障 块链 差别隐私 原始数据 分布式学习 联合学习 数据共享 过程(计算) 分布式计算 计算机安全 服务器 人工智能 数据挖掘 万维网 操作系统 病理 医学 程序设计语言 替代医学 教育学 心理学
作者
Chuan Ma,Jun Li,Long Shi,Ming Ding,Taotao Wang,Zhu Han,H. Vincent Poor
出处
期刊:IEEE Computational Intelligence Magazine [Institute of Electrical and Electronics Engineers]
卷期号:17 (3): 26-33 被引量:94
标识
DOI:10.1109/mci.2022.3180932
摘要

Motivated by the increasingly powerful computing capabilities of end-user equipment, and by the growing privacy concerns over sharing sensitive raw data, a distributed machine learning paradigm known as federated learning (FL) has emerged. By training models locally at each client and aggregating learning models at a central server, FL has the capability to avoid sharing data directly, thereby reducing privacy leakage. However, the conventional FL framework relies heavily on a single central server, and it may fail if such a server behaves maliciously. To address this single point of failure, in this work, a blockchain-assisted decentralized FL framework is investigated, which can prevent malicious clients from poisoning the learning process, and thus provides a self-motivated and reliable learning environment for clients. In this framework, the model aggregation process is fully decentralized and the tasks of training for FL and mining for blockchain are integrated into each participant. Privacy and resource-allocation issues are further investigated in the proposed framework, and a critical and unique issue inherent in the proposed framework is disclosed. In particular, a lazy client can simply duplicate models shared by other clients to reap benefits without contributing its resources to FL. To address these issues, analytical and experimental results are provided to shed light on possible solutions, i.e., adding noise to achieve local differential privacy and using pseudo-noise (PN) sequences as watermarks to detect lazy clients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
科研通AI2S应助科研通管家采纳,获得30
37秒前
Owen应助科研通管家采纳,获得10
37秒前
科研通AI2S应助科研通管家采纳,获得10
37秒前
43秒前
1分钟前
1分钟前
搜集达人应助喜欢对你笑采纳,获得10
1分钟前
隐形曼青应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
老石完成签到 ,获得积分10
3分钟前
3分钟前
CipherSage应助科研通管家采纳,获得10
4分钟前
彭于晏应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
火星上向珊完成签到,获得积分10
4分钟前
5分钟前
wdxx发布了新的文献求助30
5分钟前
liufan完成签到 ,获得积分10
5分钟前
lmplzzp完成签到,获得积分10
5分钟前
橙子味的邱憨憨完成签到 ,获得积分10
5分钟前
杪夏二八完成签到 ,获得积分10
5分钟前
wdxx完成签到,获得积分10
6分钟前
649981108发布了新的文献求助10
6分钟前
6分钟前
649981108完成签到,获得积分10
6分钟前
6分钟前
研友_892kOL完成签到,获得积分10
7分钟前
脑洞疼应助李小猫采纳,获得10
7分钟前
7分钟前
李小猫完成签到,获得积分10
7分钟前
7分钟前
李小猫发布了新的文献求助10
7分钟前
8分钟前
8分钟前
8分钟前
10分钟前
10分钟前
Tiger完成签到,获得积分10
10分钟前
10分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968504
求助须知:如何正确求助?哪些是违规求助? 3513278
关于积分的说明 11167214
捐赠科研通 3248660
什么是DOI,文献DOI怎么找? 1794386
邀请新用户注册赠送积分活动 875030
科研通“疑难数据库(出版商)”最低求助积分说明 804638