When Federated Learning Meets Blockchain: A New Distributed Learning Paradigm

计算机科学 单点故障 块链 差别隐私 原始数据 分布式学习 联合学习 数据共享 过程(计算) 分布式计算 计算机安全 服务器 人工智能 数据挖掘 万维网 操作系统 病理 医学 程序设计语言 替代医学 教育学 心理学
作者
Chuan Ma,Jun Li,Long Shi,Ming Ding,Taotao Wang,Zhu Han,H. Vincent Poor
出处
期刊:IEEE Computational Intelligence Magazine [Institute of Electrical and Electronics Engineers]
卷期号:17 (3): 26-33 被引量:94
标识
DOI:10.1109/mci.2022.3180932
摘要

Motivated by the increasingly powerful computing capabilities of end-user equipment, and by the growing privacy concerns over sharing sensitive raw data, a distributed machine learning paradigm known as federated learning (FL) has emerged. By training models locally at each client and aggregating learning models at a central server, FL has the capability to avoid sharing data directly, thereby reducing privacy leakage. However, the conventional FL framework relies heavily on a single central server, and it may fail if such a server behaves maliciously. To address this single point of failure, in this work, a blockchain-assisted decentralized FL framework is investigated, which can prevent malicious clients from poisoning the learning process, and thus provides a self-motivated and reliable learning environment for clients. In this framework, the model aggregation process is fully decentralized and the tasks of training for FL and mining for blockchain are integrated into each participant. Privacy and resource-allocation issues are further investigated in the proposed framework, and a critical and unique issue inherent in the proposed framework is disclosed. In particular, a lazy client can simply duplicate models shared by other clients to reap benefits without contributing its resources to FL. To address these issues, analytical and experimental results are provided to shed light on possible solutions, i.e., adding noise to achieve local differential privacy and using pseudo-noise (PN) sequences as watermarks to detect lazy clients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Jasper应助椰子采纳,获得10
1秒前
Stormi发布了新的文献求助10
1秒前
jym发布了新的文献求助10
1秒前
1秒前
Maigret完成签到,获得积分10
2秒前
两飞飞完成签到,获得积分10
2秒前
2秒前
韭菜盒子发布了新的文献求助10
3秒前
ximu完成签到,获得积分20
3秒前
CLN完成签到,获得积分10
3秒前
SciGPT应助单薄凌蝶采纳,获得50
4秒前
4秒前
111完成签到,获得积分10
4秒前
小马甲应助117采纳,获得10
4秒前
甜甜的猫咪完成签到,获得积分10
4秒前
4秒前
66应助马佳凯采纳,获得10
4秒前
5秒前
是述不是沭完成签到,获得积分10
5秒前
6秒前
lei完成签到,获得积分10
6秒前
瘦瘦的背包完成签到,获得积分10
7秒前
7秒前
赘婿应助Elaine采纳,获得10
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
科研小白完成签到,获得积分10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
情怀应助科研通管家采纳,获得10
7秒前
田様应助科研通管家采纳,获得10
8秒前
8秒前
思源应助科研通管家采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得50
8秒前
CodeCraft应助科研通管家采纳,获得30
8秒前
控制小弟应助科研通管家采纳,获得10
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
彭于晏应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740