When Federated Learning Meets Blockchain: A New Distributed Learning Paradigm

计算机科学 单点故障 块链 差别隐私 原始数据 分布式学习 联合学习 数据共享 过程(计算) 分布式计算 计算机安全 服务器 人工智能 数据挖掘 万维网 操作系统 病理 医学 程序设计语言 替代医学 教育学 心理学
作者
Chuan Ma,Jun Li,Long Shi,Ming Ding,Taotao Wang,Zhu Han,H. Vincent Poor
出处
期刊:IEEE Computational Intelligence Magazine [Institute of Electrical and Electronics Engineers]
卷期号:17 (3): 26-33 被引量:94
标识
DOI:10.1109/mci.2022.3180932
摘要

Motivated by the increasingly powerful computing capabilities of end-user equipment, and by the growing privacy concerns over sharing sensitive raw data, a distributed machine learning paradigm known as federated learning (FL) has emerged. By training models locally at each client and aggregating learning models at a central server, FL has the capability to avoid sharing data directly, thereby reducing privacy leakage. However, the conventional FL framework relies heavily on a single central server, and it may fail if such a server behaves maliciously. To address this single point of failure, in this work, a blockchain-assisted decentralized FL framework is investigated, which can prevent malicious clients from poisoning the learning process, and thus provides a self-motivated and reliable learning environment for clients. In this framework, the model aggregation process is fully decentralized and the tasks of training for FL and mining for blockchain are integrated into each participant. Privacy and resource-allocation issues are further investigated in the proposed framework, and a critical and unique issue inherent in the proposed framework is disclosed. In particular, a lazy client can simply duplicate models shared by other clients to reap benefits without contributing its resources to FL. To address these issues, analytical and experimental results are provided to shed light on possible solutions, i.e., adding noise to achieve local differential privacy and using pseudo-noise (PN) sequences as watermarks to detect lazy clients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
菜鸟完成签到,获得积分10
2秒前
3秒前
3秒前
朱颜完成签到,获得积分10
3秒前
洋子完成签到 ,获得积分10
6秒前
大个应助Godyo采纳,获得10
6秒前
SciGPT应助hua采纳,获得10
6秒前
菜鸟发布了新的文献求助10
7秒前
ZLPY发布了新的文献求助40
8秒前
8秒前
9秒前
麦尔哈巴发布了新的文献求助10
9秒前
共享精神应助爱吃粑粑采纳,获得10
11秒前
12秒前
14秒前
烟花应助麦尔哈巴采纳,获得10
15秒前
Ava应助家家采纳,获得10
16秒前
Ava应助王锦源采纳,获得50
17秒前
18秒前
19秒前
20秒前
sky发布了新的文献求助150
20秒前
研友_Z7WQzZ发布了新的文献求助20
21秒前
22秒前
23秒前
xf发布了新的文献求助10
24秒前
26秒前
lalaland发布了新的文献求助10
26秒前
26秒前
無期完成签到 ,获得积分10
26秒前
马田完成签到,获得积分10
28秒前
Iloveyou发布了新的文献求助10
29秒前
Siri完成签到,获得积分10
30秒前
Lucas应助科研通管家采纳,获得10
32秒前
nnqq关注了科研通微信公众号
32秒前
嗯哼应助科研通管家采纳,获得20
32秒前
科研通AI2S应助科研通管家采纳,获得10
32秒前
我是老大应助科研通管家采纳,获得10
32秒前
嗯哼应助科研通管家采纳,获得20
32秒前
32秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3259854
求助须知:如何正确求助?哪些是违规求助? 2901321
关于积分的说明 8315056
捐赠科研通 2570853
什么是DOI,文献DOI怎么找? 1396709
科研通“疑难数据库(出版商)”最低求助积分说明 653554
邀请新用户注册赠送积分活动 631933