已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Semisupervised charting for spectral multimodal manifold learning and alignment

模式 模态(人机交互) 非线性降维 人工智能 歧管(流体力学) 解耦(概率) 歧管对齐 计算机科学 图形 模式识别(心理学) 机器学习 理论计算机科学 降维 机械工程 社会科学 工程类 控制工程 社会学
作者
Ali Pournemat,Peyman Adibi,Jocelyn Chanussot
出处
期刊:Pattern Recognition [Elsevier]
卷期号:111: 107645-107645 被引量:18
标识
DOI:10.1016/j.patcog.2020.107645
摘要

For one given scene, multimodal data are acquired from multiple sensors. They share some similarities across the sensor types (redundant part of the information, also called coupling part) and they also provide modality-specific information (dissimilarities across the sensors, also called decoupling part). Additional critical knowledge about the scene can hence be extracted, which is not extractable from each modality alone. For the processing of multimodal data, we propose in this paper a model to simultaneously learn the underlying low-dimensional manifold in each modality, and locally align these manifolds across different modalities. For each pair of modalities we first build a common manifold that represents the corresponding (redundant) part of information, ignoring non-corresponding (modality specific) parts. We propose a semi-supervised learning model, using a limited amount of prior knowledge about the coupling and decoupling components of the different modalities. We propose a localized version of Laplacian eigenmaps technique specifically designed to handle multimodal manifold learning, in which the ideas of local patching of the manifolds, also known as manifold charting, is combined with the joint spectral analysis of the graph Laplacians of the different modalities. The limited given supervised information is then extending on the manifold of each modality. The idea of functional mapping is finally used to align the different manifolds across modalities. The evaluation of the proposed model using synthetic and real-world multimodal problems shows promising results, compared to several related techniques.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sora发布了新的文献求助10
3秒前
星辰大海应助lio采纳,获得200
3秒前
大模型应助xupeng采纳,获得20
5秒前
酷炫笑翠完成签到,获得积分10
5秒前
8秒前
8秒前
持卿应助1013采纳,获得20
11秒前
popeye007完成签到 ,获得积分0
12秒前
小太阳发布了新的文献求助10
13秒前
拼搏的盼山完成签到 ,获得积分10
14秒前
医学小牛马完成签到,获得积分10
15秒前
16秒前
烟花应助聪明的破茧采纳,获得10
18秒前
19秒前
大胆的碧菡完成签到,获得积分10
19秒前
今后应助葡萄酸奶冻采纳,获得10
20秒前
Sora发布了新的文献求助10
20秒前
Dr_Marila完成签到,获得积分10
21秒前
23秒前
Criminology34应助科研通管家采纳,获得10
24秒前
完美世界应助科研通管家采纳,获得10
24秒前
优美紫槐应助科研通管家采纳,获得10
24秒前
嗯嗯应助科研通管家采纳,获得10
24秒前
杨行肖应助科研通管家采纳,获得10
24秒前
Akim应助科研通管家采纳,获得10
25秒前
科研通AI6应助科研通管家采纳,获得80
25秒前
嗯嗯应助科研通管家采纳,获得10
25秒前
FashionBoy应助科研通管家采纳,获得10
25秒前
bkagyin应助科研通管家采纳,获得10
25秒前
所所应助科研通管家采纳,获得10
25秒前
26秒前
桐桐应助开心的翅膀采纳,获得20
30秒前
大个应助susan采纳,获得10
30秒前
31秒前
在水一方应助北山采纳,获得10
33秒前
wzx完成签到,获得积分10
35秒前
加油完成签到 ,获得积分10
36秒前
Sora完成签到,获得积分10
36秒前
36秒前
量子星尘发布了新的文献求助10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680781
求助须知:如何正确求助?哪些是违规求助? 5001897
关于积分的说明 15174094
捐赠科研通 4840636
什么是DOI,文献DOI怎么找? 2594249
邀请新用户注册赠送积分活动 1547310
关于科研通互助平台的介绍 1505282