Semisupervised charting for spectral multimodal manifold learning and alignment

模式 模态(人机交互) 非线性降维 人工智能 歧管(流体力学) 解耦(概率) 歧管对齐 计算机科学 图形 模式识别(心理学) 机器学习 理论计算机科学 降维 机械工程 社会科学 工程类 控制工程 社会学
作者
Ali Pournemat,Peyman Adibi,Jocelyn Chanussot
出处
期刊:Pattern Recognition [Elsevier]
卷期号:111: 107645-107645 被引量:18
标识
DOI:10.1016/j.patcog.2020.107645
摘要

For one given scene, multimodal data are acquired from multiple sensors. They share some similarities across the sensor types (redundant part of the information, also called coupling part) and they also provide modality-specific information (dissimilarities across the sensors, also called decoupling part). Additional critical knowledge about the scene can hence be extracted, which is not extractable from each modality alone. For the processing of multimodal data, we propose in this paper a model to simultaneously learn the underlying low-dimensional manifold in each modality, and locally align these manifolds across different modalities. For each pair of modalities we first build a common manifold that represents the corresponding (redundant) part of information, ignoring non-corresponding (modality specific) parts. We propose a semi-supervised learning model, using a limited amount of prior knowledge about the coupling and decoupling components of the different modalities. We propose a localized version of Laplacian eigenmaps technique specifically designed to handle multimodal manifold learning, in which the ideas of local patching of the manifolds, also known as manifold charting, is combined with the joint spectral analysis of the graph Laplacians of the different modalities. The limited given supervised information is then extending on the manifold of each modality. The idea of functional mapping is finally used to align the different manifolds across modalities. The evaluation of the proposed model using synthetic and real-world multimodal problems shows promising results, compared to several related techniques.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助机灵筮采纳,获得10
1秒前
lululala完成签到,获得积分10
2秒前
陈帅行完成签到,获得积分10
2秒前
浅斟低唱发布了新的文献求助15
2秒前
火火发布了新的文献求助10
5秒前
科研通AI6应助骆西西采纳,获得10
7秒前
hui完成签到,获得积分10
8秒前
海林完成签到 ,获得积分10
9秒前
lyc完成签到,获得积分10
9秒前
FXL完成签到 ,获得积分10
9秒前
斯文败类应助panyubo采纳,获得10
10秒前
10秒前
10秒前
12138发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
完美世界应助勤奋的擎苍采纳,获得10
12秒前
14秒前
lijiauyi1994发布了新的文献求助10
15秒前
16秒前
16秒前
16秒前
wanci应助无情的宛丝采纳,获得10
17秒前
17秒前
17秒前
17秒前
WangXiaoze发布了新的文献求助10
18秒前
19秒前
19秒前
20秒前
张佳乐发布了新的文献求助10
21秒前
zhuojiu发布了新的文献求助10
23秒前
lijiauyi1994完成签到,获得积分10
23秒前
24秒前
24秒前
任性蘑菇发布了新的文献求助10
25秒前
single完成签到,获得积分10
25秒前
笨蛋美女完成签到 ,获得积分10
26秒前
Dream完成签到 ,获得积分10
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637910
求助须知:如何正确求助?哪些是违规求助? 4744414
关于积分的说明 15000761
捐赠科研通 4796111
什么是DOI,文献DOI怎么找? 2562349
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481716