Semisupervised charting for spectral multimodal manifold learning and alignment

模式 模态(人机交互) 非线性降维 人工智能 歧管(流体力学) 解耦(概率) 歧管对齐 计算机科学 图形 模式识别(心理学) 机器学习 理论计算机科学 降维 控制工程 社会学 工程类 机械工程 社会科学
作者
Ali Pournemat,Peyman Adibi,Jocelyn Chanussot
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:111: 107645-107645 被引量:18
标识
DOI:10.1016/j.patcog.2020.107645
摘要

For one given scene, multimodal data are acquired from multiple sensors. They share some similarities across the sensor types (redundant part of the information, also called coupling part) and they also provide modality-specific information (dissimilarities across the sensors, also called decoupling part). Additional critical knowledge about the scene can hence be extracted, which is not extractable from each modality alone. For the processing of multimodal data, we propose in this paper a model to simultaneously learn the underlying low-dimensional manifold in each modality, and locally align these manifolds across different modalities. For each pair of modalities we first build a common manifold that represents the corresponding (redundant) part of information, ignoring non-corresponding (modality specific) parts. We propose a semi-supervised learning model, using a limited amount of prior knowledge about the coupling and decoupling components of the different modalities. We propose a localized version of Laplacian eigenmaps technique specifically designed to handle multimodal manifold learning, in which the ideas of local patching of the manifolds, also known as manifold charting, is combined with the joint spectral analysis of the graph Laplacians of the different modalities. The limited given supervised information is then extending on the manifold of each modality. The idea of functional mapping is finally used to align the different manifolds across modalities. The evaluation of the proposed model using synthetic and real-world multimodal problems shows promising results, compared to several related techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助淡淡夕阳采纳,获得10
刚刚
Pengsheng发布了新的文献求助10
刚刚
笨笨善若完成签到,获得积分10
1秒前
szcyxzh完成签到,获得积分10
2秒前
Seiya发布了新的文献求助20
2秒前
2秒前
打打应助liupeng0403117采纳,获得10
2秒前
when完成签到 ,获得积分10
2秒前
田様应助耿影影采纳,获得10
2秒前
666完成签到,获得积分20
5秒前
Ryan123完成签到,获得积分10
5秒前
6秒前
6秒前
7秒前
Gleaming完成签到,获得积分10
7秒前
7秒前
秦宇完成签到,获得积分10
7秒前
咳咳完成签到,获得积分20
8秒前
8秒前
swh发布了新的文献求助10
9秒前
香蕉觅云应助坦率尔琴采纳,获得10
9秒前
耿影影完成签到,获得积分10
9秒前
高兴的灵雁完成签到 ,获得积分10
10秒前
Tim完成签到,获得积分10
10秒前
11秒前
11秒前
木香007完成签到,获得积分10
11秒前
11秒前
咳咳发布了新的文献求助10
11秒前
11秒前
12秒前
叶燕发布了新的文献求助10
12秒前
耿影影发布了新的文献求助10
13秒前
13秒前
kking发布了新的文献求助10
14秒前
14秒前
14秒前
yzs发布了新的文献求助20
15秒前
15秒前
青春发布了新的文献求助10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958377
求助须知:如何正确求助?哪些是违规求助? 3504668
关于积分的说明 11119325
捐赠科研通 3235840
什么是DOI,文献DOI怎么找? 1788550
邀请新用户注册赠送积分活动 871232
科研通“疑难数据库(出版商)”最低求助积分说明 802605