Semisupervised charting for spectral multimodal manifold learning and alignment

模式 模态(人机交互) 非线性降维 人工智能 歧管(流体力学) 解耦(概率) 歧管对齐 计算机科学 图形 模式识别(心理学) 机器学习 理论计算机科学 降维 控制工程 社会学 工程类 机械工程 社会科学
作者
Ali Pournemat,Peyman Adibi,Jocelyn Chanussot
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:111: 107645-107645 被引量:18
标识
DOI:10.1016/j.patcog.2020.107645
摘要

For one given scene, multimodal data are acquired from multiple sensors. They share some similarities across the sensor types (redundant part of the information, also called coupling part) and they also provide modality-specific information (dissimilarities across the sensors, also called decoupling part). Additional critical knowledge about the scene can hence be extracted, which is not extractable from each modality alone. For the processing of multimodal data, we propose in this paper a model to simultaneously learn the underlying low-dimensional manifold in each modality, and locally align these manifolds across different modalities. For each pair of modalities we first build a common manifold that represents the corresponding (redundant) part of information, ignoring non-corresponding (modality specific) parts. We propose a semi-supervised learning model, using a limited amount of prior knowledge about the coupling and decoupling components of the different modalities. We propose a localized version of Laplacian eigenmaps technique specifically designed to handle multimodal manifold learning, in which the ideas of local patching of the manifolds, also known as manifold charting, is combined with the joint spectral analysis of the graph Laplacians of the different modalities. The limited given supervised information is then extending on the manifold of each modality. The idea of functional mapping is finally used to align the different manifolds across modalities. The evaluation of the proposed model using synthetic and real-world multimodal problems shows promising results, compared to several related techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dada发布了新的文献求助20
1秒前
隐形曼青应助zjh采纳,获得10
1秒前
2秒前
斯文败类应助El采纳,获得10
4秒前
英姑应助lixiaotian采纳,获得10
4秒前
4秒前
5秒前
动听一手发布了新的文献求助30
6秒前
SciGPT应助科研通管家采纳,获得100
6秒前
李健应助科研通管家采纳,获得10
6秒前
每天100次应助科研通管家采纳,获得20
6秒前
6秒前
天天快乐应助科研通管家采纳,获得50
7秒前
小青椒应助科研通管家采纳,获得20
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
Orange应助科研通管家采纳,获得10
7秒前
今后应助uiui采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
难过亦丝完成签到,获得积分10
8秒前
9秒前
nana发布了新的文献求助10
9秒前
难过亦丝发布了新的文献求助10
10秒前
科研通AI6应助自信的盼海采纳,获得10
11秒前
科研通AI5应助RepertoireFupeng采纳,获得30
12秒前
12秒前
量子星尘发布了新的文献求助50
13秒前
13秒前
科研通AI2S应助陈煜采纳,获得10
13秒前
13秒前
星星点灯完成签到,获得积分10
14秒前
14秒前
15秒前
贪玩的半芹完成签到,获得积分10
15秒前
刻苦的元灵完成签到 ,获得积分10
16秒前
17秒前
18秒前
图图发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5003579
求助须知:如何正确求助?哪些是违规求助? 4248189
关于积分的说明 13235662
捐赠科研通 4047228
什么是DOI,文献DOI怎么找? 2214242
邀请新用户注册赠送积分活动 1224324
关于科研通互助平台的介绍 1144641