Boosting Activity on Co4N Porous Nanosheet by Coupling CeO2 for Efficient Electrochemical Overall Water Splitting at High Current Densities

材料科学 纳米片 析氧 电化学 阳极 分解水 制氢 电解质 电解 化学工程 可逆氢电极 无机化学 纳米技术 工作电极 电极 催化作用 物理化学 光催化 工程类 生物化学 化学
作者
Hongming Sun,Cai‐Ying Tian,Guilan Fan,Jianing Qi,Ziting Liu,Zhenhua Yan,Fangyi Cheng,Jing Chen,Cheng‐Peng Li,Miao Du
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:30 (32) 被引量:273
标识
DOI:10.1002/adfm.201910596
摘要

Abstract Developing highly active nonprecious electrocatalysts with superior durability for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is crucial to improve the efficiency of overall water splitting but remains challenging. Here, a novel superhydrophilic Co 4 N‐CeO 2 hybrid nanosheet array is synthesized on a graphite plate (Co 4 N‐CeO 2 /GP) by an anion intercalation enhanced electrodeposition method, followed by high‐temperature nitridation. Doping CeO 2 into Co 4 N can favor dissociation of H 2 O and adsorption of hydrogen, reduce the energy barrier of intermediate reactions of OER, and improve the compositional stability, thereby dramatically boosting the HER performance while simultaneously inducing enhanced OER activity. Furthermore, the superhydrophilic self‐supported electrode with Co 4 N‐CeO 2 in situ grown on the conductive substrate expedites electron conduction between substrate and catalyst, promotes the bubble release from electrode timely and impedes catalyst shedding, ensuring a high efficiency and stable working state. Consequently, the Co 4 N‐CeO 2 /GP electrode shows exceptionally low overpotentials of 24 and 239 mV at 10 mA cm −2 for HER and OER, respectively. An alkaline electrolyzer by using Co 4 N‐CeO 2 /GP as both the cathode and anode requires a cell voltage of 1.507 V to drive 10 mA cm −2 , outperforming the Pt/C||RuO 2 electrolyzer (1.540 V@10 mA cm −2 ). More significantly, the electrolyzer has extraordinary long‐term durability at a large current density of 500 mA cm −2 for 50 h, revealing its potential in large‐scale applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
khaosyi完成签到 ,获得积分10
刚刚
哇哈哈完成签到,获得积分10
1秒前
1秒前
buno应助啦啦采纳,获得10
2秒前
Mike完成签到,获得积分10
2秒前
2秒前
顾矜应助chen采纳,获得10
3秒前
科研通AI5应助小王采纳,获得10
3秒前
GGBond完成签到,获得积分10
3秒前
孔雀翎发布了新的文献求助10
3秒前
寂寞的灵完成签到,获得积分10
4秒前
后知后觉发布了新的文献求助10
4秒前
百十余完成签到,获得积分10
4秒前
4秒前
4秒前
Zhaorf完成签到,获得积分10
5秒前
沉默紫槐完成签到,获得积分10
5秒前
深情安青应助易达采纳,获得10
5秒前
默默海露发布了新的文献求助10
7秒前
8秒前
flyfish完成签到,获得积分10
8秒前
36456657应助chen采纳,获得10
8秒前
每念至此完成签到,获得积分10
9秒前
大力黑米完成签到 ,获得积分10
10秒前
123发布了新的文献求助30
10秒前
搜集达人应助gaos采纳,获得10
10秒前
hengy发布了新的文献求助10
10秒前
杳鸢应助Xenia采纳,获得10
11秒前
kekekelili完成签到,获得积分10
12秒前
12秒前
zhonghbush发布了新的文献求助10
13秒前
reck发布了新的文献求助10
13秒前
13秒前
13秒前
kimcandy完成签到,获得积分10
13秒前
华仔应助任品贤采纳,获得10
14秒前
无花果应助急雪回风采纳,获得10
14秒前
16秒前
曾经的灵完成签到,获得积分20
16秒前
bkagyin应助小宇采纳,获得10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672