Real-time probabilistic forecasting of river water quality under data missing situation: Deep learning plus post-processing techniques

概率逻辑 人工神经网络 计算机科学 概率预测 缺少数据 均方误差 人工智能 水质 深度学习 可靠性(半导体) 数据挖掘 贝叶斯概率 机器学习 统计 数学 物理 生物 量子力学 功率(物理) 生态学
作者
Yanlai Zhou
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:589: 125164-125164 被引量:150
标识
DOI:10.1016/j.jhydrol.2020.125164
摘要

Abstract Quantifying the uncertainty of probabilistic water quality forecasting induced by missing input data is fundamentally challenging. This study introduced a novel methodology for probabilistic water quality forecasting conditional on point forecasts. A Multivariate Bayesian Uncertainty Processor (MBUP) was adopted to probabilistically model the relationship between the point forecasts made by a deep learning artificial neural network (ANN) and their corresponding observed water quality. The methodology was tested using hourly water quality series at an island of Shanghai City in China. The novelties relied upon: firstly, the use of a transfer learning algorithm to overcome flatten- and under-prediction bottlenecks of river water quality raised in artificial neural networks, and secondly, the use of the MBUP to capture the dependence structure between observations and forecasts. Two deep learning ANNs were used to make the point forecasts. Then the MBUP approach driven by the point forecasts demonstrated its competency in improving the accuracy of probabilistic water quality forecasts significantly, where predictive distributions encountered in multi-step-ahead water quality forecasts were effectively reduced to small ranges. The results demonstrated that the deep learning plus the post-processing approach suitably extracted the complex dependence structure between the model’s output and observed water quality so that model reliability (Containing Ratio > 85% and average Relative Band-width   0.8 and Root-Mean-Square-Error
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打爆英语发布了新的文献求助10
刚刚
zy发布了新的文献求助30
刚刚
刚刚
刚刚
嗣音完成签到,获得积分10
1秒前
专注鼠标完成签到,获得积分10
2秒前
2秒前
4秒前
陈有权发布了新的文献求助10
4秒前
Gigi完成签到,获得积分10
4秒前
4秒前
闪shan完成签到,获得积分20
4秒前
情怀应助bigxianyu采纳,获得10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
CINDY完成签到,获得积分10
5秒前
结实的保温杯完成签到,获得积分20
6秒前
鳗鱼灵雁发布了新的文献求助10
6秒前
6秒前
科研通AI5应助WNing采纳,获得10
6秒前
科研通AI5应助ZYP采纳,获得10
7秒前
安静碧灵完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
XW发布了新的文献求助10
9秒前
康zai完成签到,获得积分10
9秒前
hjx关闭了hjx文献求助
9秒前
科研通AI5应助负责的方盒采纳,获得10
9秒前
9秒前
安详的海风完成签到,获得积分10
9秒前
呆萌朝雪完成签到,获得积分20
10秒前
陈有权完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
daidai发布了新的文献求助10
11秒前
小猫宝发布了新的文献求助10
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3663305
求助须知:如何正确求助?哪些是违规求助? 3223962
关于积分的说明 9754101
捐赠科研通 2933829
什么是DOI,文献DOI怎么找? 1606430
邀请新用户注册赠送积分活动 758489
科研通“疑难数据库(出版商)”最低求助积分说明 734809