概率逻辑
一般化
自回归模型
计算机科学
解码方法
扩散
算法
朗之万方程
应用数学
人工智能
数学
统计物理学
统计
数学分析
物理
热力学
作者
Jonathan Ho,Ajay N. Jain,Pieter Abbeel
出处
期刊:Cornell University - arXiv
日期:2020-01-01
被引量:3303
标识
DOI:10.48550/arxiv.2006.11239
摘要
We present high quality image synthesis results using diffusion probabilistic models, a class of latent variable models inspired by considerations from nonequilibrium thermodynamics. Our best results are obtained by training on a weighted variational bound designed according to a novel connection between diffusion probabilistic models and denoising score matching with Langevin dynamics, and our models naturally admit a progressive lossy decompression scheme that can be interpreted as a generalization of autoregressive decoding. On the unconditional CIFAR10 dataset, we obtain an Inception score of 9.46 and a state-of-the-art FID score of 3.17. On 256x256 LSUN, we obtain sample quality similar to ProgressiveGAN. Our implementation is available at https://github.com/hojonathanho/diffusion
科研通智能强力驱动
Strongly Powered by AbleSci AI