Detection of chocolate powder adulteration with peanut using near-infrared hyperspectral imaging and Multivariate Curve Resolution

高光谱成像 端元 近红外光谱 偏最小二乘回归 化学计量学 主成分分析 像素 化学成像 数学 人工智能 模式识别(心理学) 化学 计算机科学 色谱法 统计 光学 物理
作者
Antoine Laborde,Francesc Puig‐Castellví,Delphine Jouan‐Rimbaud Bouveresse,Luc Eveleigh,Christophe Cordella,Benoît Jaillais
出处
期刊:Food Control [Elsevier]
卷期号:119: 107454-107454 被引量:44
标识
DOI:10.1016/j.foodcont.2020.107454
摘要

This study aims to detect peanut flour adulteration in chocolate powder using near-infrared (NIR) hyperspectral imaging. Fifteen samples were prepared by mixing both food products in different proportions (0%, 0.1%, 1%, 10% and 100% of peanut) and measured using the hyperspectral camera. A preliminary Principal Component Analysis (PCA) was performed to investigate the structure of the data. Next, the Multivariate Curve Resolution - Alternating Least Squares (MCR-ALS) chemometric method combined with a selectivity constraint in the concentration matrix was applied to untangle the spectral data into a set of components representative of the main constituents found in the samples. Moreover, a detection algorithm based on the calculation of the Mahalanobis distance for every pixel to the model distribution of chocolate powder was implemented. This analysis revealed the complexity of the unmixing problem, allegedly due to the spectral signature overlap in the pixel field of view and because the pure products presented similar spectral signatures. MCR-ALS results were improved after the application of a selectivity constraint, which resulted in a higher performance of the detection algorithm. MCR-ALS detected from 0% to 2.2% of adulterated pixels in mixed samples. On the other hand, the selectivity-constrained MCR-ALS method provided detections from 0.03% to 17.0% in those samples. This pipeline showed that peanut adulteration can be detected even for the lowest concentration level tested (0.1% of peanut). This work highlights the potential of NIR hyperspectral imaging combined with chemometrics for detection purposes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
2秒前
ATAYA发布了新的文献求助10
3秒前
星瑆心发布了新的文献求助10
3秒前
Lazarus_x完成签到,获得积分10
4秒前
whm发布了新的文献求助10
5秒前
豆dou发布了新的文献求助10
7秒前
旭日东升完成签到 ,获得积分10
8秒前
yyyyou完成签到,获得积分10
9秒前
科研通AI5应助xlj采纳,获得10
11秒前
Jenny应助WZ0904采纳,获得10
11秒前
弘一完成签到,获得积分10
11秒前
郑zhenglanyou完成签到 ,获得积分10
12秒前
14秒前
忧子忘完成签到,获得积分10
14秒前
15秒前
foreverchoi完成签到,获得积分10
15秒前
HH完成签到,获得积分20
15秒前
16秒前
whm完成签到,获得积分10
16秒前
18秒前
邬傥完成签到,获得积分10
19秒前
tomato应助执着采纳,获得20
20秒前
大方嵩发布了新的文献求助10
20秒前
梓ccc完成签到,获得积分10
20秒前
20秒前
求助发布了新的文献求助10
21秒前
风雨1210发布了新的文献求助10
21秒前
21秒前
22秒前
小梁要加油完成签到,获得积分20
22秒前
Alpha发布了新的文献求助10
23秒前
刘鹏宇发布了新的文献求助10
24秒前
zhangscience完成签到,获得积分10
24秒前
可爱的函函应助若狂采纳,获得10
25秒前
小蘑菇应助阿美采纳,获得30
25秒前
科研通AI2S应助机智小虾米采纳,获得10
26秒前
充电宝应助Xx.采纳,获得10
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808