Revisiting stress–strain behavior and mechanical reinforcement of polymer nanocomposites from molecular dynamics simulations

钢筋 分子动力学 纳米复合材料 材料科学 动力学(音乐) 应力-应变曲线 聚合物纳米复合材料 压力(语言学) 聚合物 拉伤 复合材料 变形(气象学) 化学 计算化学 物理 哲学 内科学 医学 语言学 声学
作者
Jianxiang Shen,Xiangsong Lin,Jun Liu,Xue Li
出处
期刊:Physical Chemistry Chemical Physics [The Royal Society of Chemistry]
卷期号:22 (29): 16760-16771 被引量:22
标识
DOI:10.1039/d0cp02225j
摘要

Through coarse-grained molecular dynamics simulations, the effects of nanoparticle properties, polymer-nanoparticle interactions, chain crosslinks and temperature on the stress-strain behavior and mechanical reinforcement of polymer nanocomposites (PNCs) are comprehensively investigated. By regulating the filler-polymer interaction (miscibility) in a wide range, an optimal dispersion state of nanoparticles is found at moderate interaction strength, while the mechanical properties of PNCs are improved monotonically with the increase of the particle-polymer interaction due to the tele-bridge structures of nanoparticles via polymer chains. Although smaller-sized fillers more easily build interconnected structures, the elastic moduli of PNCs at the percolation threshold concentration where a three-dimensional filler network forms are almost independent of nanoparticle size. Compared with spherical nanoparticles, anisotropic rod-like ones, especially with larger aspect ratio and rod stiffness, contribute exceptional reinforcement towards polymer materials. In addition, the elastic modulus with the strain, derived from the stress-strain curve, shows an analogous nonlinear behavior to the amplitude-dependence of the storage modulus (Payne effect). Such a behavior originates essentially from the failure/breakup of the microstructures contributing to the mechanical reinforcement, such as bound polymer layers around nanoparticles or nanoparticle networking structures. The Young's modulus as a function of the nanoparticle volume fraction greatly exceeds that predicted by the Einstein-Smallwood model and Guth-Gold model, which arises primarily from the contribution of the local/global filler network. The temperature dependence of the Young's modulus is further examined by mode coupling theory (MCT) and the Vogel-Fulcher-Tammann (VFT) equation, and the results indicate that the time-temperature superposition principle holds modestly above the critical temperature on the short-time (small-length) scale of elastic response. This work is expected to provide some guidance on controlling and improving the mechanical properties and nonlinear behavior of PNCs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shuang0116应助hkh采纳,获得10
刚刚
田様应助成绩好采纳,获得10
1秒前
2秒前
NexusExplorer应助甜宝采纳,获得30
2秒前
2秒前
2秒前
2秒前
领导范儿应助好多多的海采纳,获得10
2秒前
lulu完成签到,获得积分10
3秒前
彭彭发布了新的文献求助10
4秒前
4秒前
小蘑菇应助醒醒采纳,获得30
5秒前
5秒前
橘子来了发布了新的文献求助10
6秒前
lulu发布了新的文献求助10
6秒前
完美的发卡完成签到,获得积分10
6秒前
Murphy~完成签到,获得积分10
6秒前
6秒前
6秒前
Gzb发布了新的文献求助10
7秒前
7秒前
科目三应助娇气的亦云采纳,获得10
7秒前
合适春天完成签到 ,获得积分10
7秒前
辞暮发布了新的文献求助10
8秒前
li应助活泼远山采纳,获得10
8秒前
乐乐应助彭彭采纳,获得10
8秒前
Yifan2024完成签到,获得积分10
9秒前
句号完成签到,获得积分10
9秒前
霁星河发布了新的文献求助10
9秒前
任性的飞雪完成签到,获得积分10
10秒前
华仔应助高c采纳,获得10
10秒前
11秒前
yyxx发布了新的文献求助20
12秒前
12秒前
灰灰应助虚幻白玉采纳,获得10
13秒前
scienceL完成签到,获得积分10
13秒前
Shan完成签到,获得积分10
13秒前
Ting222发布了新的文献求助10
13秒前
14秒前
大个应助oblivious采纳,获得10
14秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3259243
求助须知:如何正确求助?哪些是违规求助? 2900914
关于积分的说明 8312916
捐赠科研通 2570200
什么是DOI,文献DOI怎么找? 1396285
科研通“疑难数据库(出版商)”最低求助积分说明 653468
邀请新用户注册赠送积分活动 631476