Revisiting stress–strain behavior and mechanical reinforcement of polymer nanocomposites from molecular dynamics simulations

钢筋 分子动力学 纳米复合材料 材料科学 动力学(音乐) 应力-应变曲线 聚合物纳米复合材料 压力(语言学) 聚合物 拉伤 复合材料 变形(气象学) 化学 计算化学 物理 哲学 内科学 医学 语言学 声学
作者
Jianxiang Shen,Xiangsong Lin,Jun Liu,Xue Li
出处
期刊:Physical Chemistry Chemical Physics [Royal Society of Chemistry]
卷期号:22 (29): 16760-16771 被引量:22
标识
DOI:10.1039/d0cp02225j
摘要

Through coarse-grained molecular dynamics simulations, the effects of nanoparticle properties, polymer-nanoparticle interactions, chain crosslinks and temperature on the stress-strain behavior and mechanical reinforcement of polymer nanocomposites (PNCs) are comprehensively investigated. By regulating the filler-polymer interaction (miscibility) in a wide range, an optimal dispersion state of nanoparticles is found at moderate interaction strength, while the mechanical properties of PNCs are improved monotonically with the increase of the particle-polymer interaction due to the tele-bridge structures of nanoparticles via polymer chains. Although smaller-sized fillers more easily build interconnected structures, the elastic moduli of PNCs at the percolation threshold concentration where a three-dimensional filler network forms are almost independent of nanoparticle size. Compared with spherical nanoparticles, anisotropic rod-like ones, especially with larger aspect ratio and rod stiffness, contribute exceptional reinforcement towards polymer materials. In addition, the elastic modulus with the strain, derived from the stress-strain curve, shows an analogous nonlinear behavior to the amplitude-dependence of the storage modulus (Payne effect). Such a behavior originates essentially from the failure/breakup of the microstructures contributing to the mechanical reinforcement, such as bound polymer layers around nanoparticles or nanoparticle networking structures. The Young's modulus as a function of the nanoparticle volume fraction greatly exceeds that predicted by the Einstein-Smallwood model and Guth-Gold model, which arises primarily from the contribution of the local/global filler network. The temperature dependence of the Young's modulus is further examined by mode coupling theory (MCT) and the Vogel-Fulcher-Tammann (VFT) equation, and the results indicate that the time-temperature superposition principle holds modestly above the critical temperature on the short-time (small-length) scale of elastic response. This work is expected to provide some guidance on controlling and improving the mechanical properties and nonlinear behavior of PNCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助30
1秒前
yznfly应助野性的柠檬采纳,获得30
2秒前
2秒前
2秒前
情怀应助科研通管家采纳,获得10
2秒前
2秒前
打打应助科研通管家采纳,获得10
2秒前
2秒前
pluto应助科研通管家采纳,获得10
2秒前
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
3秒前
3秒前
3秒前
纪梵希完成签到,获得积分10
3秒前
4秒前
哈哈哈哈发布了新的文献求助10
4秒前
Ljc发布了新的文献求助10
5秒前
叶白山完成签到,获得积分10
6秒前
wx完成签到,获得积分20
6秒前
6秒前
6秒前
纪梵希发布了新的文献求助10
7秒前
7秒前
morena应助汴汴采纳,获得30
8秒前
一口蛋黄苏完成签到,获得积分20
8秒前
8秒前
SYLH应助江南之南采纳,获得10
8秒前
123完成签到,获得积分10
9秒前
9秒前
你好可爱发布了新的文献求助10
9秒前
李爱国应助默默沛槐采纳,获得10
10秒前
飘逸小笼包完成签到,获得积分10
10秒前
杨新如完成签到,获得积分10
13秒前
Regina发布了新的文献求助10
13秒前
14秒前
英俊的铭应助hjg采纳,获得10
14秒前
云舒发布了新的文献求助10
14秒前
善学以致用应助故意的驳采纳,获得10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954537
求助须知:如何正确求助?哪些是违规求助? 3500689
关于积分的说明 11100600
捐赠科研通 3231199
什么是DOI,文献DOI怎么找? 1786319
邀请新用户注册赠送积分活动 869946
科研通“疑难数据库(出版商)”最低求助积分说明 801731