Ultrasound transmission tomography image reconstruction with a fully convolutional neural network

计算机科学 迭代重建 卷积神经网络 人工智能 人工神经网络 成像体模 图像质量 算法 迭代法 计算机视觉 图像(数学) 光学 物理
作者
Wenzhao Zhao,Hongjian Wang,H. Gemmeke,Koen W. A. van Dongen,Torsten Hopp,Jürgen Hesser
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:65 (23): 235021-235021 被引量:18
标识
DOI:10.1088/1361-6560/abb5c3
摘要

Image reconstruction of ultrasound computed tomography based on the wave equation is able to show much more structural details than simpler ray-based image reconstruction methods. However, to invert the wave-based forward model is computationally demanding. To address this problem, we develop an efficient fully learned image reconstruction method based on a convolutional neural network. The image is reconstructed via one forward propagation of the network given input sensor data, which is much faster than the reconstruction using conventional iterative optimization methods. To transform the ultrasound measured data in the sensor domain into the reconstructed image in the image domain, we apply multiple down-scaling and up-scaling convolutional units to efficiently increase the number of hidden layers with a large receptive and projective field that can cover all elements in inputs and outputs, respectively. For dataset generation, a paraxial approximation forward model is used to simulate ultrasound measurement data. The neural network is trained with a dataset derived from natural images in ImageNet and tested with a dataset derived from medical images in OA-Breast Phantom dataset. Test results show the superior efficiency of the proposed neural network to other reconstruction algorithms including popular neural networks. When compared with conventional iterative optimization algorithms, our neural network can reconstruct a 110 × 86 image more than 20 times faster on a CPU and 1000 times faster on a GPU with comparable image quality and is also more robust to noise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xuejunshuai发布了新的文献求助10
2秒前
缥缈的万声完成签到,获得积分10
2秒前
张爱学发布了新的文献求助10
3秒前
3秒前
乐乐应助leo227采纳,获得10
4秒前
英俊的铭应助非鱼鱼子采纳,获得10
4秒前
缓慢荔枝发布了新的文献求助10
5秒前
王九八发布了新的文献求助10
6秒前
8秒前
8秒前
8秒前
香云发布了新的文献求助10
8秒前
ljh完成签到,获得积分10
9秒前
斜杠小猪完成签到,获得积分10
10秒前
小宋发布了新的文献求助30
10秒前
所所应助晶晶baobao采纳,获得20
10秒前
香蕉觅云应助咎星采纳,获得10
10秒前
华丽的落寞完成签到,获得积分10
10秒前
xuejunshuai完成签到,获得积分10
11秒前
帅气雪糕发布了新的文献求助10
11秒前
12秒前
打打应助王某采纳,获得30
13秒前
14秒前
初九和猫完成签到,获得积分10
15秒前
15秒前
细心薯片发布了新的文献求助80
15秒前
15秒前
16秒前
May应助搞怪网络采纳,获得20
17秒前
17秒前
范佳宁发布了新的文献求助10
17秒前
话落谁家完成签到,获得积分10
17秒前
大模型应助杨小黑采纳,获得10
18秒前
完美世界应助科研通管家采纳,获得10
20秒前
汉堡包应助科研通管家采纳,获得10
20秒前
LEMONS应助科研通管家采纳,获得10
20秒前
20秒前
CodeCraft应助科研通管家采纳,获得10
20秒前
CodeCraft应助科研通管家采纳,获得10
20秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961973
求助须知:如何正确求助?哪些是违规求助? 3508240
关于积分的说明 11139976
捐赠科研通 3240869
什么是DOI,文献DOI怎么找? 1791091
邀请新用户注册赠送积分活动 872726
科研通“疑难数据库(出版商)”最低求助积分说明 803352