清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Partition-Based Partial Personalized Model for Points-of-Interest Recommendations

计算机科学 过度拟合 分拆(数论) 特征(语言学) 数据挖掘 人工智能 机器学习 人工神经网络 数学 语言学 组合数学 哲学
作者
Elahe Naserian,Xinheng Wang,Keshav Dahal,José M. Alcaraz Calero,Honghao Gao
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:8 (5): 1223-1237 被引量:8
标识
DOI:10.1109/tcss.2021.3064153
摘要

Location-aware recommendation is considered as one of human behavior cognitive analyses in the world of human-machine-environment system. The development of 5G technology and ubiquitous mobile devices has led to the emergence of a new online platform, location-based social networks (LBSNs), which allows users to share their locations. The essential feature of LBSNs is to provide users with location recommendations that help them explore new places and also to make LBSNs more prevalent to users. Most of the existing research is focusing on the introduction of new features and how these new features affect the check-in behaviors of the users. In addition, the dependencies between each feature and the probability of a user visiting the site is always a principle to follow. However, a user’s decision could be determined by considering several features at the same time. When a full model is applied by considering all the features, an overfitting problem could be occurred owing to the lack of sufficient data for each individual user. In this article, an intermediate solution was proposed to address all of these problems by fragmenting the model into several partial models, where each partial model is responsible for a few features. An additive strategy was also implemented to support the development of personalized partial models. Furthermore, a partition-based approach was introduced to explore the hidden patterns from the geographically clustered check-in data. The performance of the approaches has been evaluated by using the data sets from Foursquare and it demonstrates that the proposed approach outperforms the state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宇文非笑完成签到 ,获得积分10
刚刚
yaoliwen发布了新的文献求助10
1秒前
老狗砸完成签到 ,获得积分10
3秒前
ewind完成签到 ,获得积分10
33秒前
科研通AI2S应助帮帮我好吗采纳,获得10
41秒前
小马甲应助无限的老九采纳,获得10
42秒前
科目三应助皮老师采纳,获得50
44秒前
Shadow完成签到 ,获得积分10
1分钟前
飞云完成签到 ,获得积分10
1分钟前
王kk完成签到 ,获得积分10
1分钟前
香蕉觅云应助春华秋实采纳,获得10
1分钟前
Fred Guan完成签到 ,获得积分10
1分钟前
深情的凝云完成签到 ,获得积分10
1分钟前
轻松的飞阳完成签到 ,获得积分10
1分钟前
FashionBoy应助xun采纳,获得10
1分钟前
斯文败类应助科研通管家采纳,获得10
2分钟前
Sunny完成签到 ,获得积分10
2分钟前
诗蕊完成签到 ,获得积分0
2分钟前
Driscoll完成签到 ,获得积分10
2分钟前
高高代珊完成签到 ,获得积分10
2分钟前
wangeil007完成签到,获得积分10
2分钟前
途啊哈哈完成签到,获得积分10
3分钟前
WYnini完成签到 ,获得积分10
3分钟前
空2完成签到 ,获得积分10
3分钟前
双眼皮跳蚤完成签到,获得积分10
3分钟前
小王同学完成签到 ,获得积分10
3分钟前
安然完成签到 ,获得积分10
3分钟前
3分钟前
xun发布了新的文献求助10
3分钟前
3分钟前
科研搬运工完成签到,获得积分10
3分钟前
wyh295352318完成签到 ,获得积分10
3分钟前
春华秋实发布了新的文献求助10
3分钟前
春华秋实完成签到,获得积分10
3分钟前
陆林北完成签到,获得积分10
3分钟前
3分钟前
快乐的完成签到 ,获得积分10
3分钟前
天涯眷客发布了新的文献求助10
3分钟前
爱静静应助科研通管家采纳,获得30
4分钟前
4分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137039
求助须知:如何正确求助?哪些是违规求助? 2788014
关于积分的说明 7784284
捐赠科研通 2444088
什么是DOI,文献DOI怎么找? 1299724
科研通“疑难数据库(出版商)”最低求助积分说明 625522
版权声明 600999