Key links identification for urban road traffic network based on temporal-spatial distribution of traffic congestion

计算机科学 浮动车数据 基于Kerner三相理论的交通拥堵重构 北京 钥匙(锁) 交通拥挤 车辆信息通信系统 鉴定(生物学) 运输工程 区间(图论) 道路交通 地理 计算机安全 工程类 中国 生物 组合数学 植物 考古 数学
作者
Tian Zhao,Wei She,Shuang Li,Youwei Wang,Wei Liu,Guangjun Zai,Limin Jia,Yong Qin,Honghui Dong
出处
期刊:Modern Physics Letters B [World Scientific]
卷期号:33 (25): 1950307-1950307 被引量:1
标识
DOI:10.1142/s021798491950307x
摘要

Traffic congestion is now nearly ubiquitous in many urban areas. The improvement of road infrastructure is an effective way to ease traffic congestion, especially the key road links. So, it is a fundamental and important step to identify the key link for improving transportation efficiency. However, most approaches in the current literature use simulated data and need many assumption conditions. The result shows the low comprehensibility and the bad exactitude. This paper provides a new identification method of key links for urban road traffic network (URTN) based on temporal-spatial distribution of traffic congestion. The method involves identifying congestion state, computing time distribution of congestion state and determining key road link. By the cluster analysis of the history field data of URTN, the threshold to determine the traffic congestion of each link can be obtained. Then the time-interval of the traffic congestion can be computed by median filtering. At last, the time-interval coverage is defined and used to determine the target road link whether it is a key road link or not. The method is validated by a real-world case (Beijing road traffic network, BRTN). The result shows the feasibility and accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
asdfqwer发布了新的文献求助10
刚刚
ardejiang发布了新的文献求助10
刚刚
赘婿应助芘二胺采纳,获得10
1秒前
2秒前
ywh发布了新的文献求助10
2秒前
王黎应助破碎的玻璃采纳,获得10
2秒前
maox1aoxin应助poki采纳,获得30
3秒前
3秒前
星辰大海应助Marybaby采纳,获得10
3秒前
墨水完成签到,获得积分10
4秒前
彭于晏应助七濑采纳,获得10
4秒前
xxxxyyyy1完成签到 ,获得积分10
4秒前
lalala应助哈人的猫采纳,获得10
5秒前
爆米花应助yesiDo采纳,获得10
6秒前
8秒前
maox1aoxin应助三次成长采纳,获得30
8秒前
Charming应助pophoo采纳,获得20
8秒前
健忘飞风发布了新的文献求助20
9秒前
10秒前
ding应助沉默觅露采纳,获得10
10秒前
牛牛完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
充电宝应助文静的从菡采纳,获得10
13秒前
七濑发布了新的文献求助10
16秒前
Ava应助QYW采纳,获得10
16秒前
隐形曼青应助妥妥酱采纳,获得10
16秒前
jevon应助pophoo采纳,获得10
16秒前
Ava应助liua采纳,获得10
17秒前
ywl发布了新的文献求助10
18秒前
19秒前
20秒前
re完成签到,获得积分10
20秒前
zz完成签到,获得积分10
21秒前
21秒前
21秒前
zhang08发布了新的文献求助30
22秒前
大大怪发布了新的文献求助10
23秒前
23秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233988
求助须知:如何正确求助?哪些是违规求助? 2880400
关于积分的说明 8215350
捐赠科研通 2547939
什么是DOI,文献DOI怎么找? 1377363
科研通“疑难数据库(出版商)”最低求助积分说明 647856
邀请新用户注册赠送积分活动 623248