生物
地球微生物学
自行车
特质
气候变化
碳循环
生态学
微生物生态学
碳纤维
环境生物技术
细菌
生态系统
遗传学
林业
复合数
复合材料
材料科学
程序设计语言
地理
计算机科学
作者
Ashish A. Malik,Jennifer B. H. Martiny,Eoin L. Brodie,Adam C. Martiny,Kathleen K. Treseder,Steven D. Allison
标识
DOI:10.1038/s41396-019-0510-0
摘要
Microorganisms are critical in terrestrial carbon cycling because their growth, activity and interactions with the environment largely control the fate of recent plant carbon inputs as well as protected soil organic carbon [1, 2]. Soil carbon stocks reflect a balance between microbial decomposition of organic carbon and stabilisation of microbial assimilated carbon. The balance can shift under altered environmental conditions [3], and new research suggests that knowledge of microbial physiology may be critical for projecting changes in soil carbon and improving the prognosis of climate change feedbacks [4–7]. Still, predicting the ecosystem implications of microbial processes remains a challenge. Here we argue that this challenge can be met by identifying microbial life history strategies based on an organism’s phenotypic characteristics, or traits, and representing these strategies in ecosystem models.
What are the key microbial traits for soil carbon cycling under environmental change? Microbial growth and survival in soil are impacted by multiple traits that determine responses to varying resource availability and fluctuating abiotic conditions [8]. Cellular maintenance activities (those that do not produce growth) include production of extracellular enzymes to degrade and acquire resources, biomolecular repair mechanisms, maintenance of cellular integrity, osmotic balance, defence, antagonism, cell signalling and motility [9–11]. It is conceivable that microbial investment into maintenance activities would be generally high in soils, with their highly heterogeneous and temporally variable resource distribution and stressful abiotic conditions like extremes of moisture, temperature, pH and salinity [12, 13]. Selective pressures in suboptimal environmental conditions could lead to greater cellular-level physiological allocation to maintenance relative to growth traits (Fig. 1) thereby impacting soil carbon cycling processes.
Open in a separate window
Fig. 1
Schematic showing cellular C flux that includes depolymerisation, substrate uptake, assimilation, dissimilation, biomass synthesis and non-growth production. Extracellular enzyme production represents investment in resource acquisition, stress protein production is linked to stress tolerance mechanisms, and biomass production reflects higher growth yield. Forked arrows signify metabolic points where hypothesised tradeoffs in traits might occur. The expected empirical relationships among the key traits are also shown
科研通智能强力驱动
Strongly Powered by AbleSci AI