A CNN recognition method for early stage of 10 kV single core cable based on sheath current

人工智能 单芯 模式识别(心理学) 波形 集合(抽象数据类型) 卷积神经网络 国家(计算机科学) 力矩(物理) 计算机科学 基质(化学分析) 人工神经网络 小波 信号(编程语言) 滑动窗口协议 工程类 算法 电压 窗口(计算) 电气工程 物理 复合材料 并行计算 操作系统 材料科学 程序设计语言 经典力学
作者
Peng Chi,Zhe Zhang,Rui Liang,Cheng Cheng,Shaokang Chen
出处
期刊:Electric Power Systems Research [Elsevier BV]
卷期号:184: 106292-106292 被引量:13
标识
DOI:10.1016/j.epsr.2020.106292
摘要

Traditional analysis of cable early state recognition is mainly based on one or several threshold values of electrical characteristics, but the calculation of threshold is often affected by measurement accuracy and external disturbance, which inevitably reduces recognition accuracy. The development of artificial intelligence provides a new way to solve this problem. This paper presents a deep convolutional neural network (CNN) recognition method for early state of 10 kV single core cable based on sheath current. Firstly, waveform and energy characteristics which are extracted from the mutation information of sheath current by wavelet transform, are used to construct cable state recognition matrix. The mutational signal is detected by the cumulative sum (CU-SUM) method and intercepted by a set time window. Secondly, a 7-layer deep CNN is constructed according to the features of recognition matrix. Then the CNN model is trained by the adaptive moment estimation (Adam) method to get the recognition model of cable state. Finally, the proposed method is used to recognize cable early state by large number of samples which are obtained from the simulation of four cable states with PSCAD software. Compared with other methods, the results of simulation demonstrate that the proposed method has a high recognition accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
漂亮的忆文完成签到,获得积分10
2秒前
2秒前
ding应助江十三采纳,获得10
4秒前
6秒前
yufanhui应助包容剑鬼采纳,获得10
6秒前
JamesPei应助调皮初蝶采纳,获得10
6秒前
7秒前
龙华之士发布了新的文献求助10
8秒前
wangding发布了新的文献求助10
11秒前
斯文败类应助zsy采纳,获得10
11秒前
快乐小狗发布了新的文献求助10
13秒前
朴实向南发布了新的文献求助10
15秒前
17秒前
minjeong完成签到,获得积分10
18秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
快乐嚓茶完成签到 ,获得积分10
19秒前
qyn1234566发布了新的文献求助30
19秒前
20秒前
调皮初蝶发布了新的文献求助10
20秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
CipherSage应助科研通管家采纳,获得10
21秒前
酷波er应助科研通管家采纳,获得10
21秒前
NexusExplorer应助科研通管家采纳,获得10
21秒前
yar应助科研通管家采纳,获得10
21秒前
CodeCraft应助科研通管家采纳,获得10
21秒前
酷波er应助科研通管家采纳,获得30
21秒前
充电宝应助科研通管家采纳,获得10
21秒前
yar应助科研通管家采纳,获得10
21秒前
爆米花应助科研通管家采纳,获得10
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
yar应助科研通管家采纳,获得10
21秒前
YamDaamCaa应助科研通管家采纳,获得30
21秒前
yar应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
小新发布了新的文献求助30
21秒前
21秒前
不吃西瓜发布了新的文献求助10
22秒前
小蘑菇应助wangding采纳,获得10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975378
求助须知:如何正确求助?哪些是违规求助? 3519775
关于积分的说明 11199621
捐赠科研通 3256067
什么是DOI,文献DOI怎么找? 1798124
邀请新用户注册赠送积分活动 877386
科研通“疑难数据库(出版商)”最低求助积分说明 806305