Automatic epileptic EEG classification based on differential entropy and attention model

计算机科学 支持向量机 脑电图 模式识别(心理学) 人工智能 癫痫发作 癫痫 感知器 极限学习机 分类器(UML) 多层感知器 机器学习 语音识别 人工神经网络 精神科 神经科学 生物 心理学
作者
Jian Zhang,Zuochen Wei,Junzhong Zou,Hao Fu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:96: 103975-103975 被引量:25
标识
DOI:10.1016/j.engappai.2020.103975
摘要

In epilepsy electroencephalogram (EEG) analysis, clinicians usually interpret EEG page by page, which is time-consuming and brings heavy workload. This paper proposes a novel automatic epileptic EEG classification approach based on differential entropy and attention mechanism, aiming at designing a short-term epileptic EEG classification model with high accuracy and good generalization performance. Firstly, the original EEG recordings are decomposed into five sub-frequency bands which approximately obey the Gaussian distribution. Afterward, a improved attention model framework considering both row and column attention with a shallower VGGNet (AttVGGNet-RC) is put forward as the classifier. Finally, non-patient specific method is employed to evaluate the performance with pre-tuned hypermeters. With 8-fold data, the proposed model yielded 77.33 ± 2.91% sensitivity, 86.67 ± 3.70% specificity and 82.00 ± 1.43% accuracy, and accuracy was increased by 5.34%, 8.99%, 26.24% and 4.47% respectively compared with multi-layer perceptron (MLP), extreme learning machine (ELM), support vector machine (SVM) and Long Short-Term Memory (LSTM). With 10-fold shuffled data, the improved attention model yielded 93.84 ± 0.63% sensitivity, 95.84 ± 0.74% specificity and 95.12 ± 0.20% accuracy, and the accuracy was 1.34%, 16.29%, 27.12% and 8.24% higher than MLP, ELM, SVM and LSTM respectively. The experimental result showed that the attention model achieved high classification accuracy with low standard deviation as well as good generalization performance. Furthermore, compared with state-of-art epilepsy analysis system, the proposed approach also show better performance. Therefore, this study has significant clinical application value in epilepsy analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
红豆抹茶完成签到,获得积分10
1秒前
K007完成签到 ,获得积分10
1秒前
寂漉完成签到,获得积分10
2秒前
饱满的大白完成签到,获得积分10
2秒前
快乐雅青发布了新的文献求助10
2秒前
ll完成签到 ,获得积分10
2秒前
无限的易云完成签到,获得积分10
2秒前
彭于晏应助xixi626采纳,获得10
3秒前
林的就行发布了新的文献求助10
3秒前
3秒前
乐乐应助xgx984采纳,获得10
4秒前
刘小新完成签到,获得积分10
5秒前
852应助llg采纳,获得10
5秒前
bkagyin应助zyy_cwdl采纳,获得10
5秒前
5秒前
6秒前
6秒前
pluto应助zw采纳,获得10
6秒前
乐观凝冬发布了新的文献求助20
7秒前
李健的粉丝团团长应助hc采纳,获得10
7秒前
8秒前
烟花应助wwl采纳,获得10
9秒前
研友_Z1WrgL完成签到,获得积分10
9秒前
9秒前
英俊的铭应助美满的天薇采纳,获得10
9秒前
Andy_2024应助gemini0615采纳,获得10
11秒前
夏夏完成签到 ,获得积分10
11秒前
12秒前
从容芮应助健康的惜文采纳,获得10
13秒前
勤恳的丹珍完成签到,获得积分10
13秒前
13秒前
丘比特应助生动的凡采纳,获得10
13秒前
oceanao应助菩提本无树采纳,获得10
14秒前
甜甜玫瑰应助byumi采纳,获得10
15秒前
hc给hc的求助进行了留言
15秒前
15秒前
15秒前
argon完成签到,获得积分10
16秒前
16秒前
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156292
求助须知:如何正确求助?哪些是违规求助? 2807762
关于积分的说明 7874438
捐赠科研通 2465982
什么是DOI,文献DOI怎么找? 1312538
科研通“疑难数据库(出版商)”最低求助积分说明 630166
版权声明 601912