Automatic epileptic EEG classification based on differential entropy and attention model

计算机科学 支持向量机 脑电图 模式识别(心理学) 人工智能 癫痫发作 癫痫 感知器 极限学习机 分类器(UML) 多层感知器 机器学习 语音识别 人工神经网络 精神科 心理学 神经科学 生物
作者
Jian Zhang,Zuochen Wei,Junzhong Zou,Hao Fu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:96: 103975-103975 被引量:25
标识
DOI:10.1016/j.engappai.2020.103975
摘要

In epilepsy electroencephalogram (EEG) analysis, clinicians usually interpret EEG page by page, which is time-consuming and brings heavy workload. This paper proposes a novel automatic epileptic EEG classification approach based on differential entropy and attention mechanism, aiming at designing a short-term epileptic EEG classification model with high accuracy and good generalization performance. Firstly, the original EEG recordings are decomposed into five sub-frequency bands which approximately obey the Gaussian distribution. Afterward, a improved attention model framework considering both row and column attention with a shallower VGGNet (AttVGGNet-RC) is put forward as the classifier. Finally, non-patient specific method is employed to evaluate the performance with pre-tuned hypermeters. With 8-fold data, the proposed model yielded 77.33 ± 2.91% sensitivity, 86.67 ± 3.70% specificity and 82.00 ± 1.43% accuracy, and accuracy was increased by 5.34%, 8.99%, 26.24% and 4.47% respectively compared with multi-layer perceptron (MLP), extreme learning machine (ELM), support vector machine (SVM) and Long Short-Term Memory (LSTM). With 10-fold shuffled data, the improved attention model yielded 93.84 ± 0.63% sensitivity, 95.84 ± 0.74% specificity and 95.12 ± 0.20% accuracy, and the accuracy was 1.34%, 16.29%, 27.12% and 8.24% higher than MLP, ELM, SVM and LSTM respectively. The experimental result showed that the attention model achieved high classification accuracy with low standard deviation as well as good generalization performance. Furthermore, compared with state-of-art epilepsy analysis system, the proposed approach also show better performance. Therefore, this study has significant clinical application value in epilepsy analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助Ir采纳,获得10
1秒前
缥缈浩然完成签到,获得积分10
2秒前
Mengfanrong发布了新的文献求助10
2秒前
2秒前
3秒前
5秒前
5秒前
5秒前
123完成签到 ,获得积分20
6秒前
hilknk完成签到,获得积分10
6秒前
专注的玉米完成签到 ,获得积分10
6秒前
情怀应助kyt采纳,获得10
7秒前
7秒前
三轮老头发布了新的文献求助10
7秒前
Rylee发布了新的文献求助10
8秒前
9秒前
Ir完成签到,获得积分10
9秒前
凡人发布了新的文献求助10
10秒前
Ll关闭了Ll文献求助
11秒前
Ir发布了新的文献求助10
12秒前
慕青应助文耳东采纳,获得10
13秒前
14秒前
YY完成签到,获得积分10
15秒前
欣慰小丸子完成签到,获得积分10
15秒前
洁净冬瓜完成签到,获得积分10
16秒前
杰桑的西地那非完成签到 ,获得积分10
16秒前
吴小苏完成签到,获得积分10
17秒前
慕青应助凡人采纳,获得10
17秒前
17秒前
18秒前
李志明完成签到,获得积分10
18秒前
香蕉飞饼完成签到 ,获得积分10
20秒前
20秒前
iNk应助Joy采纳,获得10
22秒前
22秒前
果壳茉莉拌沙拉完成签到,获得积分10
23秒前
科目三应助李wz采纳,获得10
23秒前
洁净冬瓜发布了新的文献求助10
23秒前
Mengfanrong完成签到,获得积分20
23秒前
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954521
求助须知:如何正确求助?哪些是违规求助? 3500555
关于积分的说明 11099959
捐赠科研通 3231062
什么是DOI,文献DOI怎么找? 1786258
邀请新用户注册赠送积分活动 869908
科研通“疑难数据库(出版商)”最低求助积分说明 801717