数字全息显微术
相位成像
计算机科学
全息术
深度学习
数字全息术
人工智能
相(物质)
波长
网(多面体)
人工神经网络
光学
光学成像
数字成像
计算机视觉
显微镜
图像(数学)
图像处理
数字图像
物理
数学
量子力学
几何学
作者
Jianglei Di,Kaiqiang Wang,Jianlin Zhao
摘要
Deep learning has great potential in computational imaging. We propose to use three kinds of artificial neural networks in phase imaging works. An improved U-net is used to do phase unwrapping with a new phase dataset generation method and do phase imaging in an optical microscope with Transport of Intensity Equation (TIE). And then, Y-Net and Y4-Net are used to do single-wavelength and dual-wavelength digital holographic reconstruction, respectively.
科研通智能强力驱动
Strongly Powered by AbleSci AI