Image-based cell sorting using artificial intelligence

计算机科学 微流控 人工智能 单元格排序 分类 深度学习 信号(编程语言) 分类 鉴定(生物学) 图像处理 模式识别(心理学) 荧光显微镜 人工神经网络 延迟(音频) 计算机视觉 生物系统 图像(数学) 荧光 细胞 纳米技术 材料科学 化学 生物 物理 植物 生物化学 程序设计语言 电信 情报检索 量子力学
作者
Maik Herbig,Ahmad Nawaz,Marta Urbanska,Martin Nötzel,Martin Kräter,Philipp Rosendahl,C. Herold,Nicole Töpfner,Markéta Kubánková,Ruchi Goswami,Shada Abuhattum,Felix Reichel,Paul Müller,Anna Taubenberger,Salvatore Girardo,Angela Jacobi,Jochen Guck
标识
DOI:10.1117/12.2544809
摘要

Identification of different cell types is an indispensable part in biomedical research and clinical application. During the last decades, much attention was put onto molecular characterization and many cell types can now be identified and sorted based on established markers. The required staining process is a lengthy and costly treatment, which can cause alterations of cellular properties, contaminate the sample and therefore limit its subsequent use. A promising alternative to molecular markers is the label-free identification of cells using mechanical or morphological features. We introduce a microfluidic device for active label-free sorting of cells based on their bright field image supported by innovative real-time image processing and deep neural networks (DNNs). A microfluidic chip features a standing surface acoustic wave generator for actively pushing up to 100 cells/sec to a determined outlet for collection. This novel method is successfully applied for enrichment of lymphocytes, granulo-monocytes and red blood cells from human blood. Furthermore, we combined the setup with lasers and a fluorescence detection unit, allowing to assign a fluorescence signal to each captured bright-field image. Leveraging this tool and common molecular staining, we created a labelled dataset containing thousands of images of different blood cells. We used this dataset to train a DNN with optimized latency below 1 ms and used it to sort unstained neutrophils from human blood, resulting in a target concentration of 90%. The innovative approach to use deep learning for image-based sorting opens up a wide field of potential applications, for example label-free enrichment of stem-cells for transplantation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
23333发布了新的文献求助10
刚刚
刚刚
fdu_sf发布了新的文献求助10
1秒前
大吧唧完成签到,获得积分10
2秒前
Cuikangjie发布了新的文献求助10
2秒前
3秒前
柠栀发布了新的文献求助10
3秒前
忘响关注了科研通微信公众号
3秒前
橙子完成签到,获得积分10
4秒前
4秒前
胡振宁完成签到 ,获得积分10
4秒前
隐形曼青应助tang采纳,获得10
5秒前
5秒前
5秒前
5秒前
Orange应助123采纳,获得10
6秒前
7秒前
8秒前
lilili应助晚宁采纳,获得10
8秒前
Ava应助橙子采纳,获得10
8秒前
感性的若冰完成签到 ,获得积分10
8秒前
居家家发布了新的文献求助10
11秒前
CipherSage应助Ahui采纳,获得10
11秒前
床头经济学完成签到,获得积分10
11秒前
蔡博颖发布了新的文献求助10
12秒前
赘婿应助可靠的墨镜采纳,获得10
12秒前
13秒前
14秒前
16秒前
16秒前
顺利的飞荷完成签到,获得积分0
17秒前
CipherSage应助wtt采纳,获得10
17秒前
华仔应助fdu_sf采纳,获得10
17秒前
yy发布了新的文献求助10
18秒前
cuckoo发布了新的文献求助10
19秒前
19秒前
20秒前
科研通AI6应助标致凝莲采纳,获得10
22秒前
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289499
求助须知:如何正确求助?哪些是违规求助? 4441106
关于积分的说明 13826460
捐赠科研通 4323436
什么是DOI,文献DOI怎么找? 2373207
邀请新用户注册赠送积分活动 1368606
关于科研通互助平台的介绍 1332493