计算机科学
微流控
人工智能
单元格排序
分类
深度学习
信号(编程语言)
分类
鉴定(生物学)
图像处理
模式识别(心理学)
荧光显微镜
人工神经网络
延迟(音频)
计算机视觉
生物系统
图像(数学)
荧光
细胞
纳米技术
材料科学
化学
生物
物理
植物
生物化学
程序设计语言
电信
情报检索
量子力学
作者
Maik Herbig,Ahmad Nawaz,Marta Urbanska,Martin Nötzel,Martin Kräter,Philipp Rosendahl,C. Herold,Nicole Töpfner,Markéta Kubánková,Ruchi Goswami,Shada Abuhattum,Felix Reichel,Paul Müller,Anna Taubenberger,Salvatore Girardo,Angela Jacobi,Jochen Guck
摘要
Identification of different cell types is an indispensable part in biomedical research and clinical application. During the last decades, much attention was put onto molecular characterization and many cell types can now be identified and sorted based on established markers. The required staining process is a lengthy and costly treatment, which can cause alterations of cellular properties, contaminate the sample and therefore limit its subsequent use. A promising alternative to molecular markers is the label-free identification of cells using mechanical or morphological features. We introduce a microfluidic device for active label-free sorting of cells based on their bright field image supported by innovative real-time image processing and deep neural networks (DNNs). A microfluidic chip features a standing surface acoustic wave generator for actively pushing up to 100 cells/sec to a determined outlet for collection. This novel method is successfully applied for enrichment of lymphocytes, granulo-monocytes and red blood cells from human blood. Furthermore, we combined the setup with lasers and a fluorescence detection unit, allowing to assign a fluorescence signal to each captured bright-field image. Leveraging this tool and common molecular staining, we created a labelled dataset containing thousands of images of different blood cells. We used this dataset to train a DNN with optimized latency below 1 ms and used it to sort unstained neutrophils from human blood, resulting in a target concentration of 90%. The innovative approach to use deep learning for image-based sorting opens up a wide field of potential applications, for example label-free enrichment of stem-cells for transplantation.
科研通智能强力驱动
Strongly Powered by AbleSci AI