已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Modeling Height–Diameter Relationship for Poplar Plantations Using Combined-Optimization Multiple Hidden Layer Back Propagation Neural Network

人工神经网络 均方误差 乙状窦函数 反向传播 决定系数 胸径 数学 近似误差 树(集合论) 统计 模式识别(心理学) 算法 计算机科学 生物系统 人工智能 地理 数学分析 林业 生物
作者
Jianbo Shen,Zhengqiang Hu,Ram P. Sharma,Gongming Wang,Xiangchuan Meng,Mengxi Wang,Qiulai Wang,Liyong Fu
出处
期刊:Forests [MDPI AG]
卷期号:11 (4): 442-442 被引量:7
标识
DOI:10.3390/f11040442
摘要

Relationship of total height and diameter at breast height (hereafter diameter) of the trees is generally nonlinear, and therefore has complex characteristics, which can be accurately described by the height-diameter model developed using the back propagation (BP) neural network approach. The multiple hidden layered-BP neural network has several hidden layers and neurons, and is therefore considered more appropriate modeling approach compared to the single hidden layered-BP neural network approach. However, the former approach is not widely applied for tree height prediction due to absence of the effective optimization method, but it can be done using the BP neural network modeling approach. The poplar (Populus spp. L.) plantation data acquired from Guangdong province of China were used for evaluating the BP neural network modeling approach and compared its results with those obtained from the traditional regression modeling and mixed-effects modeling approaches. We determined the best BP neural network structure with two hidden layers and five neurons in each layer, and logistic sigmoid transfer functions. Relative to the Mitscherlich height-diameter model that had the highest fitting precision among the six traditional height-diameter models evaluated, coefficient of determination (R2) of the neural network height-diameter model increased by 10.3%, root mean squares error (RMSE) and mean absolute error (MAE) decreased by 12% and 13.5%, respectively. The BP neural network height-diameter model also appeared more accurate than the mixed-effects height-diameter model. Our study proposes the method of determining the optimal numbers of hidden layers, neurons of each layer, and transfer functions in the BP neural network structure. This method can be useful for other modeling studies of similar or different types, such as tree crown modeling, height, and diameter increments modeling, and so on.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zyzpkilly发布了新的文献求助10
刚刚
3秒前
4秒前
superbanggg完成签到,获得积分10
5秒前
9秒前
Zyzpkilly完成签到,获得积分10
10秒前
香蕉觅云应助Minerva采纳,获得10
12秒前
寻道图强举报调研昵称求助涉嫌违规
17秒前
22秒前
Lily完成签到 ,获得积分10
24秒前
24秒前
ZJH发布了新的文献求助20
25秒前
lvben发布了新的文献求助10
27秒前
28秒前
DocZhao完成签到 ,获得积分10
29秒前
轻松小刺猬完成签到,获得积分10
35秒前
39秒前
39秒前
jasonjiang完成签到 ,获得积分10
42秒前
火山发布了新的文献求助10
44秒前
二丫完成签到,获得积分10
49秒前
浓浓的淡淡完成签到 ,获得积分10
51秒前
Silieze完成签到,获得积分10
52秒前
火山完成签到,获得积分10
53秒前
55秒前
小二郎应助科研民工采纳,获得10
57秒前
59秒前
慕青应助虔三愿采纳,获得10
1分钟前
zhang完成签到 ,获得积分10
1分钟前
zzz发布了新的文献求助10
1分钟前
1分钟前
13654135090完成签到,获得积分10
1分钟前
累啊完成签到,获得积分10
1分钟前
1分钟前
duduwind完成签到,获得积分10
1分钟前
KK发布了新的文献求助10
1分钟前
1分钟前
Jasper应助zzz采纳,获得10
1分钟前
1分钟前
1分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154783
求助须知:如何正确求助?哪些是违规求助? 2805656
关于积分的说明 7865443
捐赠科研通 2463783
什么是DOI,文献DOI怎么找? 1311609
科研通“疑难数据库(出版商)”最低求助积分说明 629647
版权声明 601832