ResNet-SCDA-50 for Breast Abnormality Classification

自适应直方图均衡化 人工智能 计算机科学 乳腺癌 模式识别(心理学) 异常 对比度(视觉) 乳腺摄影术 直方图 集合(抽象数据类型) 微钙化 直方图均衡化 医学 癌症 图像(数学) 内科学 精神科 程序设计语言
作者
Xiang Yu,Kang Cheng,David S. Guttery,Seifedine Kadry,Yang Chen,Yudong Zhang
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (1): 94-102 被引量:78
标识
DOI:10.1109/tcbb.2020.2986544
摘要

(Aim) Breast cancer is the most common cancer in women and the second most common cancer worldwide. With the rapid advancement of deep learning, the early stages of breast cancer development can be accurately detected by radiologists with the help of artificial intelligence systems. (Method) Based on mammographic imaging, a mainstream clinical breast screening technique, we present a diagnostic system for accurate classification of breast abnormalities based on ResNet-50. To improve the proposed model, we created a new data augmentation framework called SCDA (Scaling and Contrast limited adaptive histogram equalization Data Augmentation). In its procedure, we first conduct the scaling operation to the original training set, followed by applying contrast limited adaptive histogram equalisation (CLAHE) to the scaled training set. By stacking the training set after SCDA with the original training set, we formed a new training set. The network trained by the augmented training set, was coined as ResNet-SCDA-50. Our system, which aims at a binary classification on mammographic images acquired from INbreast and MINI-MIAS, classifies masses, microcalcification as “abnormal”, while normal regions are classified as “normal”. (Results) We present the first attempt to use the image contrast enhancement method as the data augmentation method, resulting in an averaged 98.55 percent specificity and 92.83 percent sensitivity, which gives our best model an overall accuracy of 95.74 percent. (Conclusion) Our proposed method is effective in classifying breast abnormality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
拼搏思卉关注了科研通微信公众号
1秒前
1秒前
liudiqiu应助酷酷的起眸采纳,获得10
1秒前
研友_8yN60L发布了新的文献求助10
1秒前
所所应助VDC采纳,获得10
1秒前
xxq发布了新的文献求助30
1秒前
xzy发布了新的文献求助20
2秒前
Linanana完成签到,获得积分10
2秒前
2秒前
贾舒涵发布了新的文献求助10
2秒前
Sunrise完成签到,获得积分10
3秒前
HH完成签到,获得积分10
4秒前
科研通AI2S应助飞羽采纳,获得10
4秒前
风中寄云完成签到,获得积分20
4秒前
故意的傲玉应助毛慢慢采纳,获得10
4秒前
4秒前
小白发布了新的文献求助10
4秒前
5秒前
5秒前
马尼拉发布了新的文献求助10
6秒前
CodeCraft应助dildil采纳,获得10
6秒前
6秒前
cyanpomelo完成签到 ,获得积分10
7秒前
7秒前
微笑高山完成签到 ,获得积分10
7秒前
文献查找发布了新的文献求助10
7秒前
加油完成签到,获得积分20
8秒前
Sunrise发布了新的文献求助10
8秒前
tabor发布了新的文献求助10
8秒前
唐妮完成签到,获得积分10
8秒前
啵清啵完成签到,获得积分10
9秒前
9秒前
莉莉发布了新的文献求助10
9秒前
10秒前
NexusExplorer应助平常的雁凡采纳,获得10
10秒前
Silverexile完成签到,获得积分10
11秒前
11秒前
唠叨的曼易完成签到,获得积分10
11秒前
Ymj关闭了Ymj文献求助
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759