ResNet-SCDA-50 for Breast Abnormality Classification

自适应直方图均衡化 人工智能 计算机科学 乳腺癌 模式识别(心理学) 异常 对比度(视觉) 乳腺摄影术 直方图 集合(抽象数据类型) 微钙化 直方图均衡化 医学 癌症 图像(数学) 内科学 程序设计语言 精神科
作者
Xiang Yu,Kang Cheng,David S. Guttery,Seifedine Kadry,Yang Chen,Yudong Zhang
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (1): 94-102 被引量:78
标识
DOI:10.1109/tcbb.2020.2986544
摘要

(Aim) Breast cancer is the most common cancer in women and the second most common cancer worldwide. With the rapid advancement of deep learning, the early stages of breast cancer development can be accurately detected by radiologists with the help of artificial intelligence systems. (Method) Based on mammographic imaging, a mainstream clinical breast screening technique, we present a diagnostic system for accurate classification of breast abnormalities based on ResNet-50. To improve the proposed model, we created a new data augmentation framework called SCDA (Scaling and Contrast limited adaptive histogram equalization Data Augmentation). In its procedure, we first conduct the scaling operation to the original training set, followed by applying contrast limited adaptive histogram equalisation (CLAHE) to the scaled training set. By stacking the training set after SCDA with the original training set, we formed a new training set. The network trained by the augmented training set, was coined as ResNet-SCDA-50. Our system, which aims at a binary classification on mammographic images acquired from INbreast and MINI-MIAS, classifies masses, microcalcification as “abnormal”, while normal regions are classified as “normal”. (Results) We present the first attempt to use the image contrast enhancement method as the data augmentation method, resulting in an averaged 98.55 percent specificity and 92.83 percent sensitivity, which gives our best model an overall accuracy of 95.74 percent. (Conclusion) Our proposed method is effective in classifying breast abnormality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tanglu完成签到,获得积分10
1秒前
1秒前
cqyyy完成签到 ,获得积分10
1秒前
2秒前
2秒前
3秒前
李爱国应助蘑菇腿采纳,获得10
4秒前
5秒前
6秒前
乐仔完成签到,获得积分10
6秒前
关山月发布了新的文献求助10
8秒前
Akim应助娟娟采纳,获得10
9秒前
10秒前
10秒前
12秒前
Bing Yan完成签到,获得积分10
13秒前
FashionBoy应助淡定小蜜蜂采纳,获得10
13秒前
张半首发布了新的文献求助10
15秒前
Passskd发布了新的文献求助10
16秒前
16秒前
17秒前
18秒前
19秒前
迅速的幻雪完成签到,获得积分20
19秒前
研友_VZG7GZ应助了又柳采纳,获得10
20秒前
蘑菇腿发布了新的文献求助10
20秒前
星星完成签到,获得积分10
21秒前
23秒前
24秒前
隐形曼青应助Passskd采纳,获得10
25秒前
25秒前
27秒前
完美世界应助黙宇循光采纳,获得10
28秒前
溴氧铋发布了新的文献求助10
29秒前
追寻的山晴应助www采纳,获得10
30秒前
30秒前
11_aa完成签到,获得积分10
31秒前
32秒前
32秒前
33秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161699
求助须知:如何正确求助?哪些是违规求助? 2812944
关于积分的说明 7897948
捐赠科研通 2471893
什么是DOI,文献DOI怎么找? 1316222
科研通“疑难数据库(出版商)”最低求助积分说明 631263
版权声明 602129