ResNet-SCDA-50 for Breast Abnormality Classification

自适应直方图均衡化 人工智能 计算机科学 乳腺癌 模式识别(心理学) 异常 对比度(视觉) 乳腺摄影术 直方图 集合(抽象数据类型) 微钙化 直方图均衡化 医学 癌症 图像(数学) 内科学 程序设计语言 精神科
作者
Xiang Yu,Kang Cheng,David S. Guttery,Seifedine Kadry,Yang Chen,Yudong Zhang
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (1): 94-102 被引量:78
标识
DOI:10.1109/tcbb.2020.2986544
摘要

(Aim) Breast cancer is the most common cancer in women and the second most common cancer worldwide. With the rapid advancement of deep learning, the early stages of breast cancer development can be accurately detected by radiologists with the help of artificial intelligence systems. (Method) Based on mammographic imaging, a mainstream clinical breast screening technique, we present a diagnostic system for accurate classification of breast abnormalities based on ResNet-50. To improve the proposed model, we created a new data augmentation framework called SCDA (Scaling and Contrast limited adaptive histogram equalization Data Augmentation). In its procedure, we first conduct the scaling operation to the original training set, followed by applying contrast limited adaptive histogram equalisation (CLAHE) to the scaled training set. By stacking the training set after SCDA with the original training set, we formed a new training set. The network trained by the augmented training set, was coined as ResNet-SCDA-50. Our system, which aims at a binary classification on mammographic images acquired from INbreast and MINI-MIAS, classifies masses, microcalcification as “abnormal”, while normal regions are classified as “normal”. (Results) We present the first attempt to use the image contrast enhancement method as the data augmentation method, resulting in an averaged 98.55 percent specificity and 92.83 percent sensitivity, which gives our best model an overall accuracy of 95.74 percent. (Conclusion) Our proposed method is effective in classifying breast abnormality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助雪白的凡灵采纳,获得10
刚刚
JCao727完成签到,获得积分10
1秒前
qian完成签到,获得积分10
1秒前
藿藿完成签到,获得积分10
1秒前
不会取名啊完成签到,获得积分10
1秒前
cyy1226发布了新的文献求助10
1秒前
2秒前
PhysicsXX完成签到,获得积分10
3秒前
小桑桑完成签到,获得积分10
3秒前
刘文思完成签到,获得积分10
3秒前
Akim应助7890733采纳,获得10
3秒前
正直无极完成签到,获得积分10
4秒前
来来来发布了新的文献求助10
5秒前
古月完成签到,获得积分10
5秒前
Meng完成签到,获得积分10
5秒前
小泉完成签到 ,获得积分10
5秒前
海陵吹风鸡完成签到,获得积分10
6秒前
orixero应助wendy采纳,获得10
6秒前
洛尘完成签到,获得积分10
6秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
少年旭完成签到,获得积分10
7秒前
weiye1992完成签到,获得积分10
7秒前
8秒前
dangdanghong完成签到,获得积分20
8秒前
hugdoggy完成签到,获得积分10
9秒前
不语完成签到,获得积分10
9秒前
舒适静丹完成签到,获得积分10
9秒前
大模型应助weirdo采纳,获得10
9秒前
阿白完成签到,获得积分10
10秒前
沉默听芹完成签到,获得积分10
10秒前
不想看文献完成签到,获得积分10
11秒前
琼仔仔完成签到 ,获得积分10
12秒前
12秒前
13秒前
隐形曼青应助小赵同学采纳,获得10
13秒前
dangdanghong发布了新的文献求助30
13秒前
gyl完成签到 ,获得积分10
15秒前
wendy完成签到,获得积分10
15秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009093
求助须知:如何正确求助?哪些是违规求助? 3548906
关于积分的说明 11300209
捐赠科研通 3283436
什么是DOI,文献DOI怎么找? 1810365
邀请新用户注册赠送积分活动 886129
科研通“疑难数据库(出版商)”最低求助积分说明 811259