有界函数
数学
平滑度
类型(生物学)
领域(数学分析)
Dirichlet边界条件
边界(拓扑)
同种类的
二次方程
数学分析
纯数学
组合数学
几何学
生态学
生物
标识
DOI:10.1142/s0218202520400102
摘要
We consider the coupled chemotaxis–Navier–Stokes system with logistic source term [Formula: see text] in a bounded, smooth domain [Formula: see text], where [Formula: see text] and where [Formula: see text], [Formula: see text] and [Formula: see text] are given parameters. Although the degradation here is weaker than the usual quadratic case, it is proved that for any sufficiently regular initial data, the initial-value problem for this system under no-flux boundary conditions for [Formula: see text] and [Formula: see text] and homogeneous Dirichlet boundary condition for [Formula: see text] possesses at least one globally defined weak solution. And this weak solution becomes smooth after some waiting time provided [Formula: see text].
科研通智能强力驱动
Strongly Powered by AbleSci AI