苗木
生物
农学
遗传力
近交系
开花
干重
禾本科
基因-环境相互作用
扎梅斯
基因型
栽培
遗传学
基因
生物化学
作者
Adel H. Abdel‐Ghani,Bharath Kumar,Jenaro Reyes‐Matamoros,Pedro Gonzalez-Portilla,Constantin Jansen,Juan Pablo San Martin,Michael J. Lee,Thomas Lübberstedt
出处
期刊:Euphytica
[Springer Nature]
日期:2012-07-20
卷期号:189 (1): 123-133
被引量:87
标识
DOI:10.1007/s10681-012-0759-0
摘要
Genotypes with better root development have good nutrient acquisition capacity and may yield better under limited nitrogen (N) conditions and consequently can help reduce the N fertilization rate and hence mitigate some economic and ecological problems. This study focused on the genotypic variation among diverse maize inbred lines for seedling and adult plant traits under contrasting N levels. Seventy-four lines were screened under high and low N levels in a climate chamber and in the field. High phenotypic diversity was observed for seedling and adult plant traits together with moderate to high broad-sense heritability estimates. Seedling total root length and root dry weight were significantly correlated with other root traits in maize. Of the adult plant traits evaluated in the field, the anthesis-silking interval and the leaf chlorophyll contents were significantly correlated with grain yield under both low and high N levels. In one location, the seminal root length was correlated with grain yield both under low and high N levels and the root dry weight was correlated with grain yield under high N. Selection indices based on secondary root traits along with grain yield could lead to an increase in selection efficiency for grain yield under N stress condition. By identifying lines with better root development, particularly lines with longer SRL, it may be possible to select inbred lines with higher grain yield particularly under low N condition.
科研通智能强力驱动
Strongly Powered by AbleSci AI