Influence maximization in complex networks through optimal percolation

影响力营销 计算机科学 复杂网络 最大化 启发式 渗透(认知心理学) 网络科学 集合(抽象数据类型) 数学优化 数学 营销 神经科学 业务 万维网 市场营销管理 程序设计语言 生物 关系营销
作者
Flaviano Morone,Hernán A. Makse
出处
期刊:Nature [Springer Nature]
卷期号:524 (7563): 65-68 被引量:1102
标识
DOI:10.1038/nature14604
摘要

A rigorous method to determine the most influential superspreaders in complex networks is presented—involving the mapping of the problem onto optimal percolation along with a scalable algorithm for big-data social networks—showing, unexpectedly, that many weak nodes can be powerful influencers. In complex networks, some nodes are more important than others. The most important nodes are those whose elimination induces the network's collapse, and identifying them is crucial in many circumstances, for example, if searching for the most effective way to stop a disease from spreading. But this is a hard task, and most methods available for the purpose are essentially based on trial-and-error. Here, Flaviano Morone and Hernán Makse devise a rigorous method to determine the most influential nodes in random networks by mapping the problem onto optimal percolation and solving the optimization problem with an algorithm that the authors call 'collective influence'. They find that the number of optimal influencers is much smaller, and that low-degree nodes can play a much more important role in the network than previously thought. The whole frame of interconnections in complex networks hinges on a specific set of structural nodes, much smaller than the total size, which, if activated, would cause the spread of information to the whole network1, or, if immunized, would prevent the diffusion of a large scale epidemic2,3. Localizing this optimal, that is, minimal, set of structural nodes, called influencers, is one of the most important problems in network science4,5. Despite the vast use of heuristic strategies to identify influential spreaders6,7,8,9,10,11,12,13,14, the problem remains unsolved. Here we map the problem onto optimal percolation in random networks to identify the minimal set of influencers, which arises by minimizing the energy of a many-body system, where the form of the interactions is fixed by the non-backtracking matrix15 of the network. Big data analyses reveal that the set of optimal influencers is much smaller than the one predicted by previous heuristic centralities. Remarkably, a large number of previously neglected weakly connected nodes emerges among the optimal influencers. These are topologically tagged as low-degree nodes surrounded by hierarchical coronas of hubs, and are uncovered only through the optimal collective interplay of all the influencers in the network. The present theoretical framework may hold a larger degree of universality, being applicable to other hard optimization problems exhibiting a continuous transition from a known phase16.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
FashionBoy应助羊村你喜哥采纳,获得40
刚刚
1秒前
1秒前
2秒前
思源应助mengdewen采纳,获得10
2秒前
Akim应助冷彬采纳,获得10
2秒前
Lucien完成签到,获得积分10
2秒前
3秒前
曦阳发布了新的文献求助10
3秒前
zhouzhou发布了新的文献求助10
4秒前
林少玮完成签到,获得积分10
4秒前
4秒前
望天完成签到,获得积分10
4秒前
rin发布了新的文献求助10
5秒前
NexusExplorer应助dlutwcl采纳,获得10
6秒前
6秒前
di123发布了新的文献求助10
6秒前
6秒前
6秒前
1024发布了新的文献求助10
6秒前
仲乔妹发布了新的文献求助10
7秒前
666发布了新的文献求助10
7秒前
7秒前
7秒前
悦耳溪流完成签到,获得积分10
8秒前
Orange应助shineshine采纳,获得10
8秒前
清脆凡阳完成签到,获得积分10
8秒前
GG发布了新的文献求助10
8秒前
8秒前
诚心的剑完成签到,获得积分10
8秒前
8秒前
Akim应助徐橙橙采纳,获得10
9秒前
默默问芙发布了新的文献求助20
9秒前
龙慧琳完成签到,获得积分10
9秒前
林少玮发布了新的文献求助10
9秒前
小白完成签到,获得积分10
9秒前
CipherSage应助杭谷波采纳,获得10
9秒前
乐观秋荷应助艾東平采纳,获得10
10秒前
文迪完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5330356
求助须知:如何正确求助?哪些是违规求助? 4469805
关于积分的说明 13910955
捐赠科研通 4363153
什么是DOI,文献DOI怎么找? 2396686
邀请新用户注册赠送积分活动 1390108
关于科研通互助平台的介绍 1360884