Influence maximization in complex networks through optimal percolation

影响力营销 计算机科学 复杂网络 最大化 启发式 渗透(认知心理学) 网络科学 集合(抽象数据类型) 数学优化 数学 营销 神经科学 业务 万维网 市场营销管理 程序设计语言 生物 关系营销
作者
Flaviano Morone,Hernán A. Makse
出处
期刊:Nature [Springer Nature]
卷期号:524 (7563): 65-68 被引量:967
标识
DOI:10.1038/nature14604
摘要

A rigorous method to determine the most influential superspreaders in complex networks is presented—involving the mapping of the problem onto optimal percolation along with a scalable algorithm for big-data social networks—showing, unexpectedly, that many weak nodes can be powerful influencers. In complex networks, some nodes are more important than others. The most important nodes are those whose elimination induces the network's collapse, and identifying them is crucial in many circumstances, for example, if searching for the most effective way to stop a disease from spreading. But this is a hard task, and most methods available for the purpose are essentially based on trial-and-error. Here, Flaviano Morone and Hernán Makse devise a rigorous method to determine the most influential nodes in random networks by mapping the problem onto optimal percolation and solving the optimization problem with an algorithm that the authors call 'collective influence'. They find that the number of optimal influencers is much smaller, and that low-degree nodes can play a much more important role in the network than previously thought. The whole frame of interconnections in complex networks hinges on a specific set of structural nodes, much smaller than the total size, which, if activated, would cause the spread of information to the whole network1, or, if immunized, would prevent the diffusion of a large scale epidemic2,3. Localizing this optimal, that is, minimal, set of structural nodes, called influencers, is one of the most important problems in network science4,5. Despite the vast use of heuristic strategies to identify influential spreaders6,7,8,9,10,11,12,13,14, the problem remains unsolved. Here we map the problem onto optimal percolation in random networks to identify the minimal set of influencers, which arises by minimizing the energy of a many-body system, where the form of the interactions is fixed by the non-backtracking matrix15 of the network. Big data analyses reveal that the set of optimal influencers is much smaller than the one predicted by previous heuristic centralities. Remarkably, a large number of previously neglected weakly connected nodes emerges among the optimal influencers. These are topologically tagged as low-degree nodes surrounded by hierarchical coronas of hubs, and are uncovered only through the optimal collective interplay of all the influencers in the network. The present theoretical framework may hold a larger degree of universality, being applicable to other hard optimization problems exhibiting a continuous transition from a known phase16.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
务实白梦发布了新的文献求助30
1秒前
1秒前
xiarifeng123应助无心的海蓝采纳,获得20
1秒前
111发布了新的文献求助10
2秒前
相宜发布了新的文献求助10
2秒前
鳗鱼盼夏发布了新的文献求助10
2秒前
高兴元绿完成签到 ,获得积分10
3秒前
3秒前
Al发布了新的文献求助10
3秒前
威武的士萧完成签到,获得积分10
3秒前
暮辞完成签到,获得积分10
4秒前
4秒前
遗世角落发布了新的文献求助10
4秒前
夜捕白日梦完成签到,获得积分10
5秒前
6秒前
西门性冷淡完成签到,获得积分10
6秒前
小李应助炙热的白采纳,获得10
6秒前
暮辞发布了新的文献求助10
6秒前
7秒前
7秒前
天天快乐应助局内人采纳,获得10
8秒前
简单箴应助局内人采纳,获得10
8秒前
学术小白完成签到,获得积分10
8秒前
所所应助zoe采纳,获得10
8秒前
JamesPei应助ai zs采纳,获得10
8秒前
9秒前
隐形曼青应助LZY采纳,获得20
9秒前
9秒前
赘婿应助贺英采纳,获得10
9秒前
科研通AI2S应助Mr采纳,获得10
10秒前
10秒前
爆米花应助hhc采纳,获得10
12秒前
Akim应助Mori采纳,获得10
12秒前
霍旭芳发布了新的文献求助10
12秒前
fsm完成签到,获得积分10
12秒前
Jasper应助荼蘼采纳,获得10
14秒前
Myx完成签到,获得积分10
14秒前
完美凝竹发布了新的文献求助10
14秒前
14秒前
顺心靖雁完成签到,获得积分10
15秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 700
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 700
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3101379
求助须知:如何正确求助?哪些是违规求助? 2752746
关于积分的说明 7620795
捐赠科研通 2405017
什么是DOI,文献DOI怎么找? 1276094
科研通“疑难数据库(出版商)”最低求助积分说明 616692
版权声明 599058