Influence maximization in complex networks through optimal percolation

影响力营销 计算机科学 复杂网络 最大化 启发式 渗透(认知心理学) 网络科学 集合(抽象数据类型) 数学优化 数学 营销 神经科学 业务 万维网 市场营销管理 程序设计语言 生物 关系营销
作者
Flaviano Morone,Hernán A. Makse
出处
期刊:Nature [Springer Nature]
卷期号:524 (7563): 65-68 被引量:967
标识
DOI:10.1038/nature14604
摘要

A rigorous method to determine the most influential superspreaders in complex networks is presented—involving the mapping of the problem onto optimal percolation along with a scalable algorithm for big-data social networks—showing, unexpectedly, that many weak nodes can be powerful influencers. In complex networks, some nodes are more important than others. The most important nodes are those whose elimination induces the network's collapse, and identifying them is crucial in many circumstances, for example, if searching for the most effective way to stop a disease from spreading. But this is a hard task, and most methods available for the purpose are essentially based on trial-and-error. Here, Flaviano Morone and Hernán Makse devise a rigorous method to determine the most influential nodes in random networks by mapping the problem onto optimal percolation and solving the optimization problem with an algorithm that the authors call 'collective influence'. They find that the number of optimal influencers is much smaller, and that low-degree nodes can play a much more important role in the network than previously thought. The whole frame of interconnections in complex networks hinges on a specific set of structural nodes, much smaller than the total size, which, if activated, would cause the spread of information to the whole network1, or, if immunized, would prevent the diffusion of a large scale epidemic2,3. Localizing this optimal, that is, minimal, set of structural nodes, called influencers, is one of the most important problems in network science4,5. Despite the vast use of heuristic strategies to identify influential spreaders6,7,8,9,10,11,12,13,14, the problem remains unsolved. Here we map the problem onto optimal percolation in random networks to identify the minimal set of influencers, which arises by minimizing the energy of a many-body system, where the form of the interactions is fixed by the non-backtracking matrix15 of the network. Big data analyses reveal that the set of optimal influencers is much smaller than the one predicted by previous heuristic centralities. Remarkably, a large number of previously neglected weakly connected nodes emerges among the optimal influencers. These are topologically tagged as low-degree nodes surrounded by hierarchical coronas of hubs, and are uncovered only through the optimal collective interplay of all the influencers in the network. The present theoretical framework may hold a larger degree of universality, being applicable to other hard optimization problems exhibiting a continuous transition from a known phase16.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助夜守采纳,获得10
刚刚
Akin完成签到,获得积分10
1秒前
聪明与摩羯关注了科研通微信公众号
1秒前
4秒前
5秒前
哈赤完成签到 ,获得积分10
5秒前
5秒前
醉舞烟罗完成签到,获得积分10
6秒前
8秒前
今后应助筱悠采纳,获得30
8秒前
10秒前
坚定幻嫣发布了新的文献求助10
10秒前
10秒前
ding应助认真冷玉采纳,获得10
11秒前
12秒前
Akin发布了新的文献求助10
13秒前
NexusExplorer应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
星辰大海应助科研通管家采纳,获得10
14秒前
思源应助科研通管家采纳,获得10
14秒前
14秒前
8R60d8应助科研通管家采纳,获得10
14秒前
8R60d8应助科研通管家采纳,获得10
14秒前
genomed应助科研通管家采纳,获得10
14秒前
所所应助科研通管家采纳,获得10
14秒前
8R60d8应助科研通管家采纳,获得30
15秒前
8R60d8应助科研通管家采纳,获得10
15秒前
小蘑菇应助科研通管家采纳,获得10
15秒前
8R60d8应助科研通管家采纳,获得10
15秒前
15秒前
chen发布了新的文献求助10
15秒前
16秒前
NexusExplorer应助hardworkcd采纳,获得10
16秒前
糖糖完成签到 ,获得积分10
18秒前
lllll123发布了新的文献求助30
18秒前
18秒前
19秒前
贰鸟应助跳跃奇迹采纳,获得20
21秒前
22秒前
淡然宛凝完成签到 ,获得积分10
22秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146344
求助须知:如何正确求助?哪些是违规求助? 2797778
关于积分的说明 7825411
捐赠科研通 2454118
什么是DOI,文献DOI怎么找? 1306100
科研通“疑难数据库(出版商)”最低求助积分说明 627638
版权声明 601503