皮克林乳液
己醛
抗氧化剂
化学
脂质氧化
接触角
化学工程
油滴
润湿
乳状液
脂质过氧化
有机化学
材料科学
色谱法
工程类
作者
Lijuan Wang,Ya-Qiong Hu,Shou‐Wei Yin,Xiao‐Quan Yang,Furao Lai,Siqi Wang
摘要
Lipid peroxidation in oil-in-water (o/w) emulsions leads to rancidity and carcinogen formation. This work attempted to protect lipid droplets of emulsions from peroxidation via manipulation of the emulsions' interface framework using dual-function zein/CH complex particles (ZCPs). ZCP with intermediate wettability was fabricated via a simple antisolvent approach. Pickering emulsions were produced via a simple and inexpensive shear-induced emulsification technique. ZCP was irreversibly anchored at the oil-water interface to form particle-based network architecture therein, producing ultrastable o/w Pickering emulsions (ZCPEs). ZCPE was not labile to lipid oxidation, evidenced by low lipid hydroperoxides and malondialdehyde levels in the emulsions after thermally accelerated storage. The targeted accumulation of curcumin, a model antioxidant, at the interface was achieved using the ZCP as interfacial vehicle, forming antioxidant shells around dispersed droplets. The oxidative stability of ZCPEs was further improved. Interestingly, no detectable hexanal peak appeared in headspace gas chromatography of the Pickering emulsions. The novel interfacial architecture via the combination of steric hindrance from ZCP-based membrane and interfacial cargo of curcumin endowed the emulsions with favorable oxidative stability. This study opens a promising pathway for producing antioxidant emulsions via the combination of Pickering stabilization mechanism and interfacial delivery of antioxidant.
科研通智能强力驱动
Strongly Powered by AbleSci AI