化学
脱氢
甲醇
甲醇
吸附
催化作用
无机化学
氢
氧气
氘
光化学
物理化学
有机化学
物理
量子力学
作者
Israel E. Wachs,R. J. Madix
标识
DOI:10.1016/0039-6028(78)90113-9
摘要
The oxidation of methanol was studied on a Ag(110) single-crystal by temperature programmed reaction spectroscopy. The Ag(110) surface was preoxidized with oxygen-18, and deuterated methanol, CH3OD, was used to distinguish the hydroxyl hydrogen from the methyl hydrogens. Very little methanol chemisorbed on the oxygen-free Ag(110) surface, and the ability of the silver surface to dissociatively chemisorb methanol was greatly enhanced by surface oxygen. CH3OD was selectively oxidized upon adsorption at 180 K to adsorbed CH3O and D218O, and at high coverages the D218O was displaced from the Ag(110) surface. The methoxide species was the most abundant surface intermediate and decomposed via reaction channels at 250, 300 and 340 K to H2CO and hydrogen. Adsorbed H2CO also reacted with adsorbed CH3O to form H2COOCH3which subsequently yielded HCOOCH3 and hydrogen. The first-order rate constant for the dehydrogenation of D2COOCH3 to DCOOCH3 and deuterium was found to be (2.4 ± 2.0) × 1011 exp(−14.0 ± 0.5 kcalmole · RT)sec−1. This reaction is analogous to alkoxide transfer from metal alkoxides to aldehydes in the liquid phase. Excess surface oxygen atoms on the silver substrate resulted in the further oxidation of adsorbed H2CO to carbon dioxide and water. The oxidation of methanol on Ag(110) is compared to the previous study on Cu(110).
科研通智能强力驱动
Strongly Powered by AbleSci AI