Dendrite fragmentation and columnar-to-equiaxed transition during directional solidification at lower growth speed under a strong magnetic field

等轴晶 材料科学 凝聚态物理 定向凝固 磁场 旋转磁场 温度梯度 枝晶(数学) 对流 热电效应 机械 复合材料 热力学 物理 微观结构 几何学 数学 量子力学
作者
Xi Li,Annie Gagnoud,Y. Fautrelle,Zhongming Ren,R. Moreau,Yudong Zhang,Claude Esling
出处
期刊:Acta Materialia [Elsevier]
卷期号:60 (8): 3321-3332 被引量:88
标识
DOI:10.1016/j.actamat.2012.02.019
摘要

The effects of strong magnetic fields on the columnar-to-equiaxed transition (CET) have been investigated experimentally. Six alloys have been directionally solidified at low growth speeds (1–10 μm s−1) under magnetic fields up to 10 T. Experimental results show that the application of a strong magnetic field causes a dendrite fragmentation and then the CET. The thermoelectric magnetic force acting on cells/dendrites and equiaxed grains in the mushy zone has been studied numerically. Numerical results reveal that the value of the thermoelectric magnetic force increases as the magnetic field intensity and the temperature gradient increase. A torque is created on cells/dendrites and equiaxed grains. This torque breaks cells/dendrites and drives the rotation of equiaxed grains. The rotation of equiaxed grains in the mushy zone will further destroy cells/dendrites. Thus, with the increase of the magnetic field intensity and the temperature gradient, the volume fraction of equiaxed grains in front of columnar dendrites increases. When the magnetic field intensity and the temperature gradient reach a critical value, the growth of columnar dendrites is blocked and the CET then occurs. The present work may initiate a new method of inducing the CET via an applied strong magnetic field during directional solidification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蛋泥完成签到,获得积分10
刚刚
顾矜应助mingjie采纳,获得10
1秒前
zhaowenxian发布了新的文献求助10
1秒前
勤劳傲晴发布了新的文献求助10
2秒前
2秒前
橘子完成签到,获得积分10
4秒前
可耐的从安完成签到 ,获得积分10
5秒前
zho应助背后的诺言采纳,获得10
5秒前
粥粥完成签到,获得积分10
5秒前
6秒前
打打应助陈杰采纳,获得10
7秒前
充电宝应助柔弱凡松采纳,获得10
8秒前
Jasmine发布了新的文献求助10
9秒前
10秒前
10秒前
大气的秋完成签到,获得积分10
11秒前
桐桐应助BB采纳,获得10
11秒前
11秒前
11秒前
曙光完成签到,获得积分10
12秒前
12秒前
大方嵩发布了新的文献求助10
13秒前
陌路发布了新的文献求助20
13秒前
Muqi完成签到,获得积分10
13秒前
14秒前
marinemiao发布了新的文献求助10
15秒前
15秒前
丘比特应助wzxxxx采纳,获得10
16秒前
科研通AI5应助飘逸蘑菇采纳,获得10
16秒前
科研通AI2S应助cc采纳,获得10
17秒前
17秒前
17秒前
spray完成签到,获得积分10
18秒前
范范完成签到,获得积分20
18秒前
少年发布了新的文献求助10
18秒前
大力鱼发布了新的文献求助10
18秒前
19秒前
20秒前
20秒前
shilong.yang完成签到,获得积分10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794