等轴晶
材料科学
凝聚态物理
定向凝固
磁场
旋转磁场
温度梯度
枝晶(数学)
对流
热电效应
机械
复合材料
热力学
物理
微观结构
几何学
数学
量子力学
作者
Xi Li,Annie Gagnoud,Y. Fautrelle,Zhongming Ren,R. Moreau,Yudong Zhang,Claude Esling
出处
期刊:Acta Materialia
[Elsevier]
日期:2012-04-06
卷期号:60 (8): 3321-3332
被引量:88
标识
DOI:10.1016/j.actamat.2012.02.019
摘要
The effects of strong magnetic fields on the columnar-to-equiaxed transition (CET) have been investigated experimentally. Six alloys have been directionally solidified at low growth speeds (1–10 μm s−1) under magnetic fields up to 10 T. Experimental results show that the application of a strong magnetic field causes a dendrite fragmentation and then the CET. The thermoelectric magnetic force acting on cells/dendrites and equiaxed grains in the mushy zone has been studied numerically. Numerical results reveal that the value of the thermoelectric magnetic force increases as the magnetic field intensity and the temperature gradient increase. A torque is created on cells/dendrites and equiaxed grains. This torque breaks cells/dendrites and drives the rotation of equiaxed grains. The rotation of equiaxed grains in the mushy zone will further destroy cells/dendrites. Thus, with the increase of the magnetic field intensity and the temperature gradient, the volume fraction of equiaxed grains in front of columnar dendrites increases. When the magnetic field intensity and the temperature gradient reach a critical value, the growth of columnar dendrites is blocked and the CET then occurs. The present work may initiate a new method of inducing the CET via an applied strong magnetic field during directional solidification.
科研通智能强力驱动
Strongly Powered by AbleSci AI