亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparison of bivariate and multivariate statistical approaches in landslide susceptibility mapping at a regional scale

山崩 范畴变量 二元分析 逻辑回归 比例(比率) 多元统计 统计 地质学 数据集 回归 地图学 地理 数学 地貌学
作者
Renee Deborah Schicker,Vicki G. Moon
出处
期刊:Geomorphology [Elsevier]
卷期号:161-162: 40-57 被引量:150
标识
DOI:10.1016/j.geomorph.2012.03.036
摘要

Landslide susceptibility assessment was undertaken for the Waikato Region, New Zealand. Landslide inventory data were extracted from a pre-existing database that included few landslides in the region (1.4% of area), and is limited in terms of completeness of record and location uncertainty. This database is in contrast to those normally used for research, which are derived for the research project and are complete and accurate, but is representative of those that may exist within government bodies. This paper applies statistical methods to derive a meaningful predictive map for planning purposes from such a relatively poorly defined database. Susceptibility maps for both logistic regression and weights of evidence were derived and evaluated using success, prediction, and ROC curves. Both statistical methods gave models with fair predictive capacity for validation samples from the original database with areas under ROC curves (AUC) of 0.71 to 0.75. An independent set of landslide data compiled from observations made in Google Earth showed lower overall prediction quality, with the logistic regression method giving the best prediction (AUC = 0.71). For this regional assessment, categorical data proved a major constraint on the application of logistic regression as the area considered has complex geology and geomorphology. As a result, the large number of categories required led to a complex and unwieldy statistical model, whereas division into fewer categories meant that real variability in the area could not be adequately represented. This limited the result to a model with two continuous variables, slope and mean monthly rainfall. The incomplete record in the database proved of little concern for the logistic regression method as the model was able to generalise landslide locations from the known sites well, giving a similar AUC value for the original and independent data; the same was not true for the weights of evidence method which was not successful at predicting landslides outside those in the original data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
22秒前
兰兰不懒发布了新的文献求助10
29秒前
赘婿应助兰兰不懒采纳,获得10
41秒前
Magali发布了新的文献求助80
45秒前
玉灵子发布了新的文献求助10
1分钟前
上官若男应助玉灵子采纳,获得10
1分钟前
无花果应助zizideng采纳,获得10
1分钟前
NexusExplorer应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
zizideng发布了新的文献求助10
1分钟前
zizideng完成签到,获得积分10
2分钟前
h0jian09完成签到,获得积分10
2分钟前
爆米花应助zhangxiaoqing采纳,获得10
2分钟前
小二郎应助达西苏采纳,获得10
3分钟前
3分钟前
笑傲完成签到,获得积分10
3分钟前
3分钟前
3分钟前
zhangxiaoqing发布了新的文献求助10
3分钟前
3分钟前
达西苏发布了新的文献求助10
3分钟前
达西苏完成签到,获得积分10
4分钟前
激动的似狮完成签到,获得积分0
4分钟前
量子星尘发布了新的文献求助10
4分钟前
小青椒应助霸气面包采纳,获得10
4分钟前
pups发布了新的文献求助10
5分钟前
5分钟前
wmm完成签到,获得积分10
5分钟前
Jasper应助pups采纳,获得20
5分钟前
Wei发布了新的文献求助20
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
不如看海完成签到 ,获得积分10
5分钟前
orixero应助科研通管家采纳,获得10
5分钟前
Lucas应助科研通管家采纳,获得10
5分钟前
5分钟前
科研通AI6应助信陵君无忌采纳,获得10
6分钟前
原子超人完成签到,获得积分10
6分钟前
wanci应助ma采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671275
求助须知:如何正确求助?哪些是违规求助? 4913655
关于积分的说明 15134379
捐赠科研通 4830066
什么是DOI,文献DOI怎么找? 2586738
邀请新用户注册赠送积分活动 1540332
关于科研通互助平台的介绍 1498523