Global habitat suitability models of terrestrial mammals

IUCN红色名录 物种丰富度 生态学 栖息地 濒危物种 哺乳动物 地理 濒危物种 宏观生态学 物种分布 亚热带 近危物种 生物
作者
Carlo Rondinini,Moreno Di Marco,Federica Chiozza,Giulia Santulli,Daniele Baisero,Piero Visconti,Michael Hoffmann,Jan Schipper,Simon N. Stuart,Marcelo F. Tognelli,Giovanni Amori,Alessandra Falcucci,Luigi Maiorano,Luigi Boitani
出处
期刊:Philosophical Transactions of the Royal Society B [The Royal Society]
卷期号:366 (1578): 2633-2641 被引量:280
标识
DOI:10.1098/rstb.2011.0113
摘要

Detailed large-scale information on mammal distribution has often been lacking, hindering conservation efforts. We used the information from the 2009 IUCN Red List of Threatened Species as a baseline for developing habitat suitability models for 5027 out of 5330 known terrestrial mammal species, based on their habitat relationships. We focused on the following environmental variables: land cover, elevation and hydrological features. Models were developed at 300 m resolution and limited to within species' known geographical ranges. A subset of the models was validated using points of known species occurrence. We conducted a global, fine-scale analysis of patterns of species richness. The richness of mammal species estimated by the overlap of their suitable habitat is on average one-third less than that estimated by the overlap of their geographical ranges. The highest absolute difference is found in tropical and subtropical regions in South America, Africa and Southeast Asia that are not covered by dense forest. The proportion of suitable habitat within mammal geographical ranges correlates with the IUCN Red List category to which they have been assigned, decreasing monotonically from Least Concern to Endangered. These results demonstrate the importance of fine-resolution distribution data for the development of global conservation strategies for mammals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
仁爱的乐枫完成签到,获得积分10
刚刚
刚刚
金润完成签到,获得积分10
1秒前
ZZ完成签到,获得积分10
1秒前
AteeqBaloch发布了新的文献求助10
2秒前
PaulLao完成签到,获得积分10
2秒前
2秒前
fleee发布了新的文献求助10
2秒前
2秒前
3秒前
Luyao发布了新的文献求助10
3秒前
海派Hi完成签到 ,获得积分10
3秒前
依依完成签到 ,获得积分10
4秒前
李健的小迷弟应助库外采纳,获得10
4秒前
yi完成签到 ,获得积分10
4秒前
kbj发布了新的文献求助10
4秒前
6秒前
佳言2009完成签到,获得积分10
7秒前
汉堡包应助漂亮的初蓝采纳,获得10
7秒前
hohokuz发布了新的文献求助10
8秒前
莫里完成签到,获得积分10
8秒前
zxz发布了新的文献求助10
8秒前
Luyao完成签到,获得积分10
9秒前
9秒前
9秒前
马甲完成签到,获得积分10
9秒前
科研通AI5应助xdf采纳,获得10
9秒前
周周完成签到,获得积分10
9秒前
Holybot完成签到,获得积分10
9秒前
11秒前
只道寻常完成签到,获得积分10
11秒前
fleee完成签到,获得积分10
11秒前
swsx1317发布了新的文献求助10
11秒前
12秒前
雪白涵山完成签到,获得积分20
12秒前
liao完成签到 ,获得积分10
12秒前
hu970发布了新的文献求助30
12秒前
科研小白发布了新的文献求助20
13秒前
SciGPT应助白小白采纳,获得10
13秒前
shuxi完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762