Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions

奇异值分解 算法 矩阵分解 稀疏矩阵 奇异值 低秩近似 QR分解 随机性 数学 矩阵完成 随机算法 计算机科学 基质(化学分析) 数学优化 汉克尔矩阵 特征向量 统计 量子力学 高斯分布 物理 数学分析 复合材料 材料科学
作者
Nathan Halko,Per‐Gunnar Martinsson,Joel A. Tropp
出处
期刊:Siam Review [Society for Industrial and Applied Mathematics]
卷期号:53 (2): 217-288 被引量:3877
标识
DOI:10.1137/090771806
摘要

Low-rank matrix approximations, such as the truncated singular value decomposition and the rank-revealing QR decomposition, play a central role in data analysis and scientific computing. This work surveys and extends recent research which demonstrates that randomization offers a powerful tool for performing low-rank matrix approximation. These techniques exploit modern computational architectures more fully than classical methods and open the possibility of dealing with truly massive data sets. This paper presents a modular framework for constructing randomized algorithms that compute partial matrix decompositions. These methods use random sampling to identify a subspace that captures most of the action of a matrix. The input matrix is then compressed—either explicitly or implicitly—to this subspace, and the reduced matrix is manipulated deterministically to obtain the desired low-rank factorization. In many cases, this approach beats its classical competitors in terms of accuracy, robustness, and/or speed. These claims are supported by extensive numerical experiments and a detailed error analysis. The specific benefits of randomized techniques depend on the computational environment. Consider the model problem of finding the k dominant components of the singular value decomposition of an $m \times n$ matrix. (i) For a dense input matrix, randomized algorithms require $\bigO(mn \log(k))$ floating-point operations (flops) in contrast to $ \bigO(mnk)$ for classical algorithms. (ii) For a sparse input matrix, the flop count matches classical Krylov subspace methods, but the randomized approach is more robust and can easily be reorganized to exploit multiprocessor architectures. (iii) For a matrix that is too large to fit in fast memory, the randomized techniques require only a constant number of passes over the data, as opposed to $\bigO(k)$ passes for classical algorithms. In fact, it is sometimes possible to perform matrix approximation with a single pass over the data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朱云发布了新的文献求助10
1秒前
杨佳宁发布了新的文献求助10
1秒前
十号发布了新的文献求助10
2秒前
落后的乌龟应助小太阳采纳,获得10
2秒前
2秒前
领导范儿应助shu采纳,获得10
2秒前
chemchen完成签到,获得积分10
2秒前
HZH完成签到,获得积分10
2秒前
圆圆901234发布了新的文献求助30
3秒前
4秒前
花粉过敏完成签到,获得积分10
5秒前
KXQ发布了新的文献求助10
5秒前
科研通AI2S应助敲敲采纳,获得10
5秒前
霜序完成签到,获得积分10
6秒前
水蔓菁完成签到,获得积分10
6秒前
momo完成签到 ,获得积分10
6秒前
6秒前
6秒前
还单身的老虎完成签到,获得积分10
6秒前
Mashiro完成签到,获得积分10
6秒前
无花果应助优雅的听兰采纳,获得10
7秒前
真实的南琴完成签到,获得积分10
8秒前
8秒前
勤奋白昼完成签到,获得积分20
8秒前
CodeCraft应助gan采纳,获得10
9秒前
英俊的铭应助0000采纳,获得10
9秒前
9秒前
xxx发布了新的文献求助10
11秒前
11秒前
yang发布了新的文献求助30
11秒前
李爱国应助KXQ采纳,获得10
11秒前
11秒前
11秒前
雪白的小土豆完成签到,获得积分10
11秒前
tuiiao完成签到 ,获得积分10
12秒前
黄礼韬发布了新的文献求助10
13秒前
李四发布了新的文献求助10
15秒前
qing完成签到,获得积分10
15秒前
16秒前
XY发布了新的文献求助10
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049