Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions

奇异值分解 算法 矩阵分解 稀疏矩阵 奇异值 低秩近似 QR分解 随机性 数学 矩阵完成 随机算法 计算机科学 基质(化学分析) 数学优化 汉克尔矩阵 特征向量 统计 量子力学 高斯分布 物理 数学分析 复合材料 材料科学
作者
Nathan Halko,Per‐Gunnar Martinsson,Joel A. Tropp
出处
期刊:Siam Review [Society for Industrial and Applied Mathematics]
卷期号:53 (2): 217-288 被引量:3877
标识
DOI:10.1137/090771806
摘要

Low-rank matrix approximations, such as the truncated singular value decomposition and the rank-revealing QR decomposition, play a central role in data analysis and scientific computing. This work surveys and extends recent research which demonstrates that randomization offers a powerful tool for performing low-rank matrix approximation. These techniques exploit modern computational architectures more fully than classical methods and open the possibility of dealing with truly massive data sets. This paper presents a modular framework for constructing randomized algorithms that compute partial matrix decompositions. These methods use random sampling to identify a subspace that captures most of the action of a matrix. The input matrix is then compressed—either explicitly or implicitly—to this subspace, and the reduced matrix is manipulated deterministically to obtain the desired low-rank factorization. In many cases, this approach beats its classical competitors in terms of accuracy, robustness, and/or speed. These claims are supported by extensive numerical experiments and a detailed error analysis. The specific benefits of randomized techniques depend on the computational environment. Consider the model problem of finding the k dominant components of the singular value decomposition of an $m \times n$ matrix. (i) For a dense input matrix, randomized algorithms require $\bigO(mn \log(k))$ floating-point operations (flops) in contrast to $ \bigO(mnk)$ for classical algorithms. (ii) For a sparse input matrix, the flop count matches classical Krylov subspace methods, but the randomized approach is more robust and can easily be reorganized to exploit multiprocessor architectures. (iii) For a matrix that is too large to fit in fast memory, the randomized techniques require only a constant number of passes over the data, as opposed to $\bigO(k)$ passes for classical algorithms. In fact, it is sometimes possible to perform matrix approximation with a single pass over the data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
孙瑞完成签到,获得积分10
1秒前
2秒前
2秒前
思源应助wang采纳,获得10
2秒前
槐序二三发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
111发布了新的文献求助10
4秒前
dou发布了新的文献求助10
4秒前
4秒前
科研通AI6应助JJJJccW采纳,获得10
4秒前
嘟嘟完成签到,获得积分10
5秒前
5秒前
科研通AI6应助Picrif采纳,获得10
5秒前
asdfzxcv应助WangYZ采纳,获得10
5秒前
天天快乐应助xuan采纳,获得10
5秒前
pluto应助xuan采纳,获得10
5秒前
我是老大应助xuan采纳,获得10
5秒前
一叶知秋应助xuan采纳,获得10
5秒前
科研通AI6应助xuan采纳,获得10
5秒前
sunshine发布了新的文献求助10
5秒前
科研通AI6应助xuan采纳,获得10
5秒前
汉堡包应助xuan采纳,获得10
6秒前
科研通AI6应助xuan采纳,获得10
6秒前
科研通AI6应助xuan采纳,获得10
6秒前
天天快乐应助xuan采纳,获得10
6秒前
狄淇儿发布了新的文献求助10
7秒前
XH_L发布了新的文献求助10
7秒前
Scarlett发布了新的文献求助10
7秒前
脑洞疼应助CMUSK采纳,获得10
8秒前
科研通AI6应助LTT采纳,获得10
8秒前
JamesPei应助槐序二三采纳,获得10
8秒前
光芒万丈小太阳关注了科研通微信公众号
8秒前
8秒前
qin完成签到,获得积分10
9秒前
9秒前
赘婿应助FFZ采纳,获得10
9秒前
可乐鸡翅发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648206
求助须知:如何正确求助?哪些是违规求助? 4775141
关于积分的说明 15043236
捐赠科研通 4807251
什么是DOI,文献DOI怎么找? 2570608
邀请新用户注册赠送积分活动 1527392
关于科研通互助平台的介绍 1486407