Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions

奇异值分解 算法 矩阵分解 稀疏矩阵 奇异值 低秩近似 QR分解 随机性 数学 矩阵完成 随机算法 计算机科学 基质(化学分析) 数学优化 汉克尔矩阵 特征向量 统计 物理 数学分析 复合材料 高斯分布 量子力学 材料科学
作者
Nathan Halko,Per‐Gunnar Martinsson,Joel A. Tropp
出处
期刊:Siam Review [Society for Industrial and Applied Mathematics]
卷期号:53 (2): 217-288 被引量:3877
标识
DOI:10.1137/090771806
摘要

Low-rank matrix approximations, such as the truncated singular value decomposition and the rank-revealing QR decomposition, play a central role in data analysis and scientific computing. This work surveys and extends recent research which demonstrates that randomization offers a powerful tool for performing low-rank matrix approximation. These techniques exploit modern computational architectures more fully than classical methods and open the possibility of dealing with truly massive data sets. This paper presents a modular framework for constructing randomized algorithms that compute partial matrix decompositions. These methods use random sampling to identify a subspace that captures most of the action of a matrix. The input matrix is then compressed—either explicitly or implicitly—to this subspace, and the reduced matrix is manipulated deterministically to obtain the desired low-rank factorization. In many cases, this approach beats its classical competitors in terms of accuracy, robustness, and/or speed. These claims are supported by extensive numerical experiments and a detailed error analysis. The specific benefits of randomized techniques depend on the computational environment. Consider the model problem of finding the k dominant components of the singular value decomposition of an $m \times n$ matrix. (i) For a dense input matrix, randomized algorithms require $\bigO(mn \log(k))$ floating-point operations (flops) in contrast to $ \bigO(mnk)$ for classical algorithms. (ii) For a sparse input matrix, the flop count matches classical Krylov subspace methods, but the randomized approach is more robust and can easily be reorganized to exploit multiprocessor architectures. (iii) For a matrix that is too large to fit in fast memory, the randomized techniques require only a constant number of passes over the data, as opposed to $\bigO(k)$ passes for classical algorithms. In fact, it is sometimes possible to perform matrix approximation with a single pass over the data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
fedehe发布了新的文献求助10
1秒前
1秒前
djx发布了新的文献求助10
1秒前
1秒前
希望天下0贩的0应助forever采纳,获得10
1秒前
可可完成签到,获得积分10
1秒前
孙行行发布了新的文献求助10
1秒前
田様应助仲侣弥月采纳,获得10
1秒前
SG发布了新的文献求助10
2秒前
汉堡肉应助小越越采纳,获得10
2秒前
2秒前
yadikar发布了新的文献求助10
2秒前
龙晴发布了新的文献求助10
3秒前
情怀应助花砸采纳,获得10
3秒前
无极微光应助星期日采纳,获得20
3秒前
华仔应助欣欣欣然采纳,获得10
3秒前
陈浩浪发布了新的文献求助10
3秒前
无辜丹翠发布了新的文献求助10
4秒前
上官若男应助搞怪小凡采纳,获得10
4秒前
甄幻梦完成签到,获得积分10
4秒前
打工科研完成签到 ,获得积分10
4秒前
4秒前
琉璃完成签到,获得积分10
4秒前
4秒前
4秒前
酷波er应助炙热的灵薇采纳,获得10
5秒前
充电宝应助桑尼号采纳,获得10
5秒前
Nancy发布了新的文献求助10
5秒前
顾矜应助LJY采纳,获得10
5秒前
李爱国应助冷酷仇天采纳,获得10
5秒前
芝士李子完成签到,获得积分20
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
胖馨馨完成签到,获得积分10
6秒前
6秒前
学术段发布了新的文献求助10
6秒前
7秒前
luermei完成签到,获得积分10
7秒前
dp发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546244
求助须知:如何正确求助?哪些是违规求助? 4632131
关于积分的说明 14625170
捐赠科研通 4573805
什么是DOI,文献DOI怎么找? 2507814
邀请新用户注册赠送积分活动 1484466
关于科研通互助平台的介绍 1455707