Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions

奇异值分解 算法 矩阵分解 稀疏矩阵 奇异值 低秩近似 QR分解 随机性 数学 矩阵完成 随机算法 计算机科学 基质(化学分析) 数学优化 汉克尔矩阵 特征向量 统计 物理 数学分析 复合材料 高斯分布 量子力学 材料科学
作者
Nathan Halko,Per‐Gunnar Martinsson,Joel A. Tropp
出处
期刊:Siam Review [Society for Industrial and Applied Mathematics]
卷期号:53 (2): 217-288 被引量:3754
标识
DOI:10.1137/090771806
摘要

Low-rank matrix approximations, such as the truncated singular value decomposition and the rank-revealing QR decomposition, play a central role in data analysis and scientific computing. This work surveys and extends recent research which demonstrates that randomization offers a powerful tool for performing low-rank matrix approximation. These techniques exploit modern computational architectures more fully than classical methods and open the possibility of dealing with truly massive data sets. This paper presents a modular framework for constructing randomized algorithms that compute partial matrix decompositions. These methods use random sampling to identify a subspace that captures most of the action of a matrix. The input matrix is then compressed—either explicitly or implicitly—to this subspace, and the reduced matrix is manipulated deterministically to obtain the desired low-rank factorization. In many cases, this approach beats its classical competitors in terms of accuracy, robustness, and/or speed. These claims are supported by extensive numerical experiments and a detailed error analysis. The specific benefits of randomized techniques depend on the computational environment. Consider the model problem of finding the k dominant components of the singular value decomposition of an $m \times n$ matrix. (i) For a dense input matrix, randomized algorithms require $\bigO(mn \log(k))$ floating-point operations (flops) in contrast to $ \bigO(mnk)$ for classical algorithms. (ii) For a sparse input matrix, the flop count matches classical Krylov subspace methods, but the randomized approach is more robust and can easily be reorganized to exploit multiprocessor architectures. (iii) For a matrix that is too large to fit in fast memory, the randomized techniques require only a constant number of passes over the data, as opposed to $\bigO(k)$ passes for classical algorithms. In fact, it is sometimes possible to perform matrix approximation with a single pass over the data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚定自信完成签到,获得积分20
刚刚
南玖完成签到,获得积分10
刚刚
1秒前
mx应助BRID采纳,获得10
1秒前
不二臣发布了新的文献求助10
1秒前
1秒前
yucj完成签到,获得积分10
1秒前
1秒前
赘婿应助尊敬的芷卉采纳,获得10
1秒前
2秒前
禅花游鱼发布了新的文献求助20
2秒前
2秒前
kelvin_wang发布了新的文献求助10
3秒前
3秒前
Yuan完成签到,获得积分10
3秒前
狂野忆文发布了新的文献求助10
4秒前
Ultraman完成签到,获得积分10
4秒前
hah发布了新的文献求助10
4秒前
嘿撒完成签到,获得积分20
5秒前
思源应助wyy采纳,获得10
5秒前
olivia发布了新的文献求助10
6秒前
kong发布了新的文献求助10
6秒前
包容代芹发布了新的文献求助10
7秒前
7秒前
华仔应助李白采纳,获得10
8秒前
CodeCraft应助Ttt采纳,获得10
8秒前
9秒前
9秒前
时尚的电脑完成签到 ,获得积分10
9秒前
紫心发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
张两丰完成签到,获得积分10
12秒前
12秒前
椿·完成签到,获得积分10
12秒前
隐形的紫菜完成签到,获得积分10
12秒前
烤地瓜要吃甜完成签到,获得积分10
12秒前
13秒前
阿嘎普莱特完成签到,获得积分10
13秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961675
求助须知:如何正确求助?哪些是违规求助? 3507998
关于积分的说明 11139238
捐赠科研通 3240579
什么是DOI,文献DOI怎么找? 1791017
邀请新用户注册赠送积分活动 872696
科研通“疑难数据库(出版商)”最低求助积分说明 803326