Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions

奇异值分解 算法 矩阵分解 稀疏矩阵 奇异值 低秩近似 QR分解 随机性 数学 矩阵完成 随机算法 计算机科学 基质(化学分析) 数学优化 汉克尔矩阵 特征向量 统计 量子力学 高斯分布 物理 数学分析 复合材料 材料科学
作者
Nathan Halko,Per‐Gunnar Martinsson,Joel A. Tropp
出处
期刊:Siam Review [Society for Industrial and Applied Mathematics]
卷期号:53 (2): 217-288 被引量:3754
标识
DOI:10.1137/090771806
摘要

Low-rank matrix approximations, such as the truncated singular value decomposition and the rank-revealing QR decomposition, play a central role in data analysis and scientific computing. This work surveys and extends recent research which demonstrates that randomization offers a powerful tool for performing low-rank matrix approximation. These techniques exploit modern computational architectures more fully than classical methods and open the possibility of dealing with truly massive data sets. This paper presents a modular framework for constructing randomized algorithms that compute partial matrix decompositions. These methods use random sampling to identify a subspace that captures most of the action of a matrix. The input matrix is then compressed—either explicitly or implicitly—to this subspace, and the reduced matrix is manipulated deterministically to obtain the desired low-rank factorization. In many cases, this approach beats its classical competitors in terms of accuracy, robustness, and/or speed. These claims are supported by extensive numerical experiments and a detailed error analysis. The specific benefits of randomized techniques depend on the computational environment. Consider the model problem of finding the k dominant components of the singular value decomposition of an $m \times n$ matrix. (i) For a dense input matrix, randomized algorithms require $\bigO(mn \log(k))$ floating-point operations (flops) in contrast to $ \bigO(mnk)$ for classical algorithms. (ii) For a sparse input matrix, the flop count matches classical Krylov subspace methods, but the randomized approach is more robust and can easily be reorganized to exploit multiprocessor architectures. (iii) For a matrix that is too large to fit in fast memory, the randomized techniques require only a constant number of passes over the data, as opposed to $\bigO(k)$ passes for classical algorithms. In fact, it is sometimes possible to perform matrix approximation with a single pass over the data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
852应助guard采纳,获得10
1秒前
1秒前
2秒前
2秒前
程与鱼完成签到,获得积分20
3秒前
3秒前
渝州人应助科研通管家采纳,获得10
4秒前
爱静静应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
良辰应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
CyrusSo524应助科研通管家采纳,获得10
4秒前
潇潇雨歇应助科研通管家采纳,获得20
4秒前
打打应助科研通管家采纳,获得10
4秒前
爱静静应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
5秒前
zho发布了新的文献求助10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得50
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
潇潇雨歇应助科研通管家采纳,获得20
5秒前
Orange应助科研通管家采纳,获得20
5秒前
小蘑菇应助科研通管家采纳,获得30
5秒前
5秒前
5秒前
5秒前
爱静静应助科研通管家采纳,获得10
5秒前
12发布了新的文献求助10
5秒前
6秒前
酷波er应助sjfczyh采纳,获得10
7秒前
LQTZST发布了新的文献求助10
8秒前
kuxingzhe1993发布了新的文献求助20
8秒前
叶落孤城发布了新的文献求助10
8秒前
jy发布了新的文献求助10
8秒前
科研通AI5应助应文俊采纳,获得10
9秒前
9秒前
xiaofeng完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555160
求助须知:如何正确求助?哪些是违规求助? 3130863
关于积分的说明 9388950
捐赠科研通 2830329
什么是DOI,文献DOI怎么找? 1555932
邀请新用户注册赠送积分活动 726345
科研通“疑难数据库(出版商)”最低求助积分说明 715734