The mast cell is a central player in allergy and asthma. Activation of these cells induces the release of preformed inflammatory mediators localized in specialized granules and the de novo synthesis and secretion of cytokines, chemokines, and eicosanoids. The balance of engaging inhibitory and activatory cell-surface receptors on mast cells determines whether the cell becomes active on encountering a challenge. However, recent evidence suggests that, once activated, a mast cell's response is further regulated by the balance of both positive and negative intracellular molecular events that extend well beyond the traditional role of kinases and phosphatases. These functional responses are also carefully governed by other protein and lipid mediators that determine the rate and extent of the response. Molecules that have adaptor functions, modulate lipids, and provide synergistic signals add to the regulatory complexity. Considerable information has been obtained from the study of the high-affinity receptor for IgE (FcɛRI), and thus it is the major focus of this review. The unifying theme is that the regulatory steps mentioned herein are required for promoting effective responses while protecting against unwanted inflammatory responses.