Illuminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networks

人工神经网络 黑匣子 计算机科学 人工智能 变量(数学) 机器学习 口译(哲学) 随机化 解释力 过程(计算) 数学 生物 生物信息学 临床试验 数学分析
作者
Julian D. Olden,Donald A. Jackson
出处
期刊:Ecological Modelling [Elsevier]
卷期号:154 (1-2): 135-150 被引量:899
标识
DOI:10.1016/s0304-3800(02)00064-9
摘要

Abstract With the growth of statistical modeling in the ecological sciences, researchers are using more complex methods, such as artificial neural networks (ANNs), to address problems associated with pattern recognition and prediction. Although in many studies ANNs have been shown to exhibit superior predictive power compared to traditional approaches, they have also been labeled a “black box” because they provide little explanatory insight into the relative influence of the independent variables in the prediction process. This lack of explanatory power is a major concern to ecologists since the interpretation of statistical models is desirable for gaining knowledge of the causal relationships driving ecological phenomena. In this study, we describe a number of methods for understanding the mechanics of ANNs (e.g. Neural Interpretation Diagram, Garson's algorithm, sensitivity analysis). Next, we propose and demonstrate a randomization approach for statistically assessing the importance of axon connection weights and the contribution of input variables in the neural network. This approach provides researchers with the ability to eliminate null-connections between neurons whose weights do not significantly influence the network output (i.e. predicted response variable), thus facilitating the interpretation of individual and interacting contributions of the input variables in the network. Furthermore, the randomization approach can identify variables that significantly contribute to network predictions, thereby providing a variable selection method for ANNs. We show that by extending randomization approaches to ANNs, the “black box” mechanics of ANNs can be greatly illuminated. Thus, by coupling this new explanatory power of neural networks with its strong predictive abilities, ANNs promise to be a valuable quantitative tool to evaluate, understand, and predict ecological phenomena.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笨笨忘幽完成签到,获得积分10
4秒前
12秒前
小pppp发布了新的文献求助10
17秒前
HH1202完成签到 ,获得积分10
21秒前
今后应助小pppp采纳,获得10
27秒前
彦成完成签到,获得积分10
28秒前
jimmy_bytheway完成签到,获得积分0
30秒前
高海龙完成签到 ,获得积分10
36秒前
831143完成签到 ,获得积分0
39秒前
CLTTT完成签到,获得积分10
40秒前
萧水白完成签到,获得积分10
44秒前
yyy完成签到 ,获得积分10
50秒前
绿袖子完成签到,获得积分10
1分钟前
在水一方应助hunajx采纳,获得10
1分钟前
1分钟前
1分钟前
mark33442完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Tonald Yang发布了新的文献求助10
1分钟前
wuludie应助科研通管家采纳,获得10
1分钟前
wuludie应助科研通管家采纳,获得10
1分钟前
wuludie应助科研通管家采纳,获得10
1分钟前
搜集达人应助hunajx采纳,获得10
1分钟前
1分钟前
2分钟前
hunajx发布了新的文献求助10
2分钟前
2分钟前
朴实寻琴完成签到 ,获得积分10
2分钟前
DL完成签到 ,获得积分10
2分钟前
cugwzr完成签到,获得积分10
2分钟前
GQ完成签到,获得积分10
2分钟前
Tonald Yang发布了新的文献求助10
2分钟前
2分钟前
快乐的幼丝完成签到 ,获得积分10
2分钟前
芝芝发布了新的文献求助10
2分钟前
赘婿应助hunajx采纳,获得10
3分钟前
三国杀校老弟完成签到,获得积分10
3分钟前
qiao完成签到,获得积分10
3分钟前
好吃完成签到 ,获得积分10
3分钟前
skkr完成签到,获得积分10
3分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Treatise on Estuarine and Coastal Science (Second Edition) Volume 3: Biogeochemical Cycling 2024 500
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3341890
求助须知:如何正确求助?哪些是违规求助? 2969246
关于积分的说明 8637910
捐赠科研通 2648911
什么是DOI,文献DOI怎么找? 1450469
科研通“疑难数据库(出版商)”最低求助积分说明 671913
邀请新用户注册赠送积分活动 660986