Illuminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networks

人工神经网络 黑匣子 计算机科学 人工智能 变量(数学) 机器学习 口译(哲学) 随机化 解释力 过程(计算) 数学 生物 生物信息学 临床试验 数学分析
作者
Julian D. Olden,Donald A. Jackson
出处
期刊:Ecological Modelling [Elsevier BV]
卷期号:154 (1-2): 135-150 被引量:899
标识
DOI:10.1016/s0304-3800(02)00064-9
摘要

Abstract With the growth of statistical modeling in the ecological sciences, researchers are using more complex methods, such as artificial neural networks (ANNs), to address problems associated with pattern recognition and prediction. Although in many studies ANNs have been shown to exhibit superior predictive power compared to traditional approaches, they have also been labeled a “black box” because they provide little explanatory insight into the relative influence of the independent variables in the prediction process. This lack of explanatory power is a major concern to ecologists since the interpretation of statistical models is desirable for gaining knowledge of the causal relationships driving ecological phenomena. In this study, we describe a number of methods for understanding the mechanics of ANNs (e.g. Neural Interpretation Diagram, Garson's algorithm, sensitivity analysis). Next, we propose and demonstrate a randomization approach for statistically assessing the importance of axon connection weights and the contribution of input variables in the neural network. This approach provides researchers with the ability to eliminate null-connections between neurons whose weights do not significantly influence the network output (i.e. predicted response variable), thus facilitating the interpretation of individual and interacting contributions of the input variables in the network. Furthermore, the randomization approach can identify variables that significantly contribute to network predictions, thereby providing a variable selection method for ANNs. We show that by extending randomization approaches to ANNs, the “black box” mechanics of ANNs can be greatly illuminated. Thus, by coupling this new explanatory power of neural networks with its strong predictive abilities, ANNs promise to be a valuable quantitative tool to evaluate, understand, and predict ecological phenomena.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
俭朴青烟发布了新的文献求助30
刚刚
5秒前
5秒前
rocket发布了新的文献求助20
6秒前
sldl完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
xiangyiyi发布了新的文献求助10
8秒前
小蘑菇应助Lily_0_o采纳,获得10
9秒前
朱文韬发布了新的文献求助10
10秒前
吴彦祖的通通完成签到 ,获得积分10
11秒前
隐形曼青应助Vintor采纳,获得10
14秒前
奋斗的凡完成签到 ,获得积分10
14秒前
小麻薯完成签到,获得积分20
14秒前
搜集达人应助程星宇采纳,获得10
15秒前
小扇完成签到,获得积分10
16秒前
和风完成签到 ,获得积分10
16秒前
0511发布了新的文献求助10
18秒前
20秒前
烟花应助123采纳,获得10
20秒前
22秒前
Desperado完成签到,获得积分20
23秒前
24秒前
Vintor发布了新的文献求助10
25秒前
MindAway完成签到,获得积分10
26秒前
Jane完成签到,获得积分10
26秒前
imcwj完成签到 ,获得积分10
26秒前
26秒前
无花果应助xiangyiyi采纳,获得10
27秒前
赘婿应助马上毕业采纳,获得10
28秒前
29秒前
30秒前
汉堡包应助fxy采纳,获得10
34秒前
34秒前
Owen应助启航采纳,获得10
35秒前
俭朴青烟完成签到,获得积分20
36秒前
39秒前
emmm发布了新的文献求助10
40秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958087
求助须知:如何正确求助?哪些是违规求助? 3504271
关于积分的说明 11117667
捐赠科研通 3235582
什么是DOI,文献DOI怎么找? 1788396
邀请新用户注册赠送积分活动 871204
科研通“疑难数据库(出版商)”最低求助积分说明 802541