A flexible microactuator (FMA) driven by an electropneumatic (or electrohydraulic) system has been developed. The FMA has three degrees of freedom, pitch, yaw, and stretch, and these are suitable movements for miniature robotic mechanisms such as fingers, arms, or legs. The construction is of fiber-reinforced rubber, and the mechanism is very simple. Gentle miniature robots with no conventional links can be designed using this design. The FMA's basic characteristics and its applications to certain robot mechanisms are presented. Serially connected FMAs act as a miniature robot manipulator. The kinematics and control algorithm for this type of robot are presented. FMAs combined in parallel act as a multifingered robot hand, with each FMA representing a finger. An algorithm for the cooperative control of such FMAs, the stable region for holding, and its performance are presented.< >