亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Reconstruction of 2D PET data with Monte Carlo generated system matrix for generalized natural pixels

像素 蒙特卡罗方法 基函数 计算机科学 算法 探测器 迭代重建 基础(线性代数) 图像分辨率 计算机视觉 人工智能 数学 几何学 数学分析 电信 统计
作者
Stefaan Vandenberghe,Steven Staelens,Charles L. Byrne,E.J. Soares,Ignace Lemahieu,Stephen J. Glick
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:51 (12): 3105-3125 被引量:35
标识
DOI:10.1088/0031-9155/51/12/008
摘要

In discrete detector PET, natural pixels are image basis functions calculated from the response of detector pairs. By using reconstruction with natural pixel basis functions, the discretization of the object into a predefined grid can be avoided. Here, we propose to use generalized natural pixel reconstruction. Using this approach, the basis functions are not the detector sensitivity functions as in the natural pixel case but uniform parallel strips. The backprojection of the strip coefficients results in the reconstructed image. This paper proposes an easy and efficient way to generate the matrix M directly by Monte Carlo simulation. Elements of the generalized natural pixel system matrix are formed by calculating the intersection of a parallel strip with the detector sensitivity function. These generalized natural pixels are easier to use than conventional natural pixels because the final step from solution to a square pixel representation is done by simple backprojection. Due to rotational symmetry in the PET scanner, the matrix M is block circulant and only the first blockrow needs to be stored. Data were generated using a fast Monte Carlo simulator using ray tracing. The proposed method was compared to a listmode MLEM algorithm, which used ray tracing for doing forward and backprojection. Comparison of the algorithms with different phantoms showed that an improved resolution can be obtained using generalized natural pixel reconstruction with accurate system modelling. In addition, it was noted that for the same resolution a lower noise level is present in this reconstruction. A numerical observer study showed the proposed method exhibited increased performance as compared to a standard listmode EM algorithm. In another study, more realistic data were generated using the GATE Monte Carlo simulator. For these data, a more uniform contrast recovery and a better contrast-to-noise performance were observed. It was observed that major improvements in contrast recovery were obtained with MLEM when the correct system matrix was used instead of simple ray tracing. The correct modelling was the major cause of improved contrast for the same background noise. Less important factors were the choice of the algorithm (MLEM performed better than ART) and the basis functions (generalized natural pixels gave better results than pixels).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潮鸣完成签到 ,获得积分10
7秒前
英姑应助科研通管家采纳,获得10
15秒前
彭于晏应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
15秒前
25秒前
30秒前
32秒前
35秒前
41秒前
kelien1205完成签到 ,获得积分10
41秒前
fanpengzhen完成签到,获得积分10
45秒前
隐形曼青应助余国辉采纳,获得30
47秒前
48秒前
yerenjie完成签到 ,获得积分10
50秒前
53秒前
端庄煜祺发布了新的文献求助10
53秒前
今天你开组会了吗完成签到 ,获得积分10
57秒前
苏宗旭发布了新的文献求助10
59秒前
nuliguan完成签到 ,获得积分10
1分钟前
jyy应助wxyllxx采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
潘特完成签到,获得积分10
1分钟前
JamesPei应助端庄煜祺采纳,获得10
1分钟前
苏宗旭完成签到,获得积分10
1分钟前
yuaner发布了新的文献求助10
1分钟前
沐风完成签到 ,获得积分10
1分钟前
1分钟前
端庄煜祺完成签到,获得积分10
1分钟前
1分钟前
1分钟前
几米杨完成签到,获得积分10
1分钟前
雷锋完成签到,获得积分10
1分钟前
科研通AI2S应助wxyllxx采纳,获得10
1分钟前
daisies发布了新的文献求助10
1分钟前
不甜完成签到 ,获得积分10
1分钟前
江江完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3566546
求助须知:如何正确求助?哪些是违规求助? 3139282
关于积分的说明 9431374
捐赠科研通 2840146
什么是DOI,文献DOI怎么找? 1560950
邀请新用户注册赠送积分活动 730090
科研通“疑难数据库(出版商)”最低求助积分说明 717816