Profiling schoolchildren in pain and associated demographic and behavioural factors: A latent class approach

潜在类模型 头痛 医学 肌肉骨骼痛 物理疗法 颈部疼痛 入射(几何) 横断面研究 精神科 替代医学 数学 统计 光学 物理 病理
作者
Gary Adamson,Sam Murphy,Mark Shevlin,Peter Buckle,David Stubbs
出处
期刊:Pain [Ovid Technologies (Wolters Kluwer)]
卷期号:129 (3): 295-303 被引量:47
标识
DOI:10.1016/j.pain.2006.10.015
摘要

Musculoskeletal pain in adolescence is common and individuals frequently report pain in different sites. However, statistical analysis is often limited to considering one or a few pain sites. In this study latent class analysis was used to classify individuals into latent classes in terms of their patterns of endorsing ten musculoskeletal sites. Previously established covariates of musculoskeletal pain in adolescents were then assessed across emergent latent classes. The study was a cross sectional survey of adolescents attending post-primary schools in England. A total of 679 took part in the study with an age range from 11 to 14 years. Pain was operationalised as the occurrence of pain for one day or more in the past month. Schoolchildren self-reported on the incidence of pain aided by a nordic manikin. A three-class model emerged as the best fit. Classes were labelled ‘Pain free’ (63.4%), ‘Neck and back’ pain (28.2%) and ‘Widespread’ pain (8.4%). The ‘Widespread’ pain class was significantly related with Age (OR = 1.79; 95%CI 1.24–2.57), Sex (OR = 0.35, 95%CI 0.16–0.79), bag weight to body weight (OR = 1.12, 95%CI 1.03–1.22), bag carrying method (OR = 2.08, 95%CI 1.08–3.97), Schoolwork difficult (OR = 2.78, 95%CI 1.27–6.07), and headaches (OR = 2.13, 95%CI 1.65–2.76). While Strengths and Difficulties Questionnaire scores (OR = 1.05, 95%CI 1.01–1.11), and Headaches (OR = 1.78, 95%CI 1.39–2.26) were significant for the ‘Back and neck’ class. It is suggested that research should seek to identify typical pain profiles for adolescents, rather than concentrating on specific pain sites since some risk factors may be obscured or inflated by inappropriately amalgamating or segregating pain sites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
汉堡包应助pwj采纳,获得10
1秒前
1秒前
StevenZhao完成签到,获得积分0
1秒前
1秒前
tianmeiling发布了新的文献求助10
1秒前
1秒前
Owen应助smash采纳,获得10
2秒前
2秒前
充电宝应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
3秒前
JFH应助科研通管家采纳,获得10
3秒前
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得20
3秒前
上官若男应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
情怀应助Yi采纳,获得10
4秒前
柯妍顺发布了新的文献求助10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
wakkkkk完成签到,获得积分10
4秒前
lijiuyi发布了新的文献求助10
4秒前
zhangdatong发布了新的文献求助10
4秒前
4秒前
5秒前
沐沐发布了新的文献求助10
5秒前
5秒前
ddddd完成签到,获得积分10
5秒前
6秒前
Orange应助早日毕业采纳,获得10
6秒前
明亮灭绝发布了新的文献求助10
6秒前
FashionBoy应助风清扬采纳,获得10
6秒前
7秒前
高分求助中
Genetics: From Genes to Genomes 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3474722
求助须知:如何正确求助?哪些是违规求助? 3066781
关于积分的说明 9101249
捐赠科研通 2758153
什么是DOI,文献DOI怎么找? 1513464
邀请新用户注册赠送积分活动 699554
科研通“疑难数据库(出版商)”最低求助积分说明 699028