亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Inverse‐optimized 3D conformal planning: Minimizing complexity while achieving equivalence with beamlet IMRT in multiple clinical sites

光圈(计算机存储器) 计算机科学 反向 放射治疗计划 共形映射 杠杆(统计) 等价(形式语言) 医学物理学 数学优化 数学 人工智能 医学 放射治疗 物理 放射科 声学 离散数学 数学分析 几何学
作者
Benedick A. Fraass,J. Steers,M.M. Matuszak,Daniel L. McShan
出处
期刊:Medical Physics [Wiley]
卷期号:39 (6Part1): 3361-3374 被引量:12
标识
DOI:10.1118/1.4709604
摘要

Purpose: Inverse planned intensity modulated radiation therapy (IMRT) has helped many centers implement highly conformal treatment planning with beamlet‐based techniques. The many comparisons between IMRT and 3D conformal (3DCRT) plans, however, have been limited because most 3DCRT plans are forward‐planned while IMRT plans utilize inverse planning, meaning both optimization and delivery techniques are different. This work avoids that problem by comparing 3D plans generated with a unique inverse planning method for 3DCRT called inverse‐optimized 3D (IO‐3D) conformal planning. Since IO‐3D and the beamlet IMRT to which it is compared use the same optimization techniques, cost functions, and plan evaluation tools, direct comparisons between IMRT and simple, optimized IO‐3D plans are possible. Though IO‐3D has some similarity to direct aperture optimization (DAO), since it directly optimizes the apertures used, IO‐3D is specifically designed for 3DCRT fields (i.e., 1–2 apertures per beam) rather than starting with IMRT‐like modulation and then optimizing aperture shapes. The two algorithms are very different in design, implementation, and use. The goals of this work include using IO‐3D to evaluate how close simple but optimized IO‐3D plans come to nonconstrained beamlet IMRT, showing that optimization, rather than modulation, may be the most important aspect of IMRT (for some sites). Methods: The IO‐3D dose calculation and optimization functionality is integrated in the in‐house 3D planning/optimization system. New features include random point dose calculation distributions, costlet and cost function capabilities, fast dose volume histogram (DVH) and plan evaluation tools, optimization search strategies designed for IO‐3D, and an improved, reimplemented edge/octree calculation algorithm. The IO‐3D optimization, in distinction to DAO, is designed to optimize 3D conformal plans (one to two segments per beam) and optimizes MLC segment shapes and weights with various user‐controllable search strategies which optimize plans without beamlet or pencil beam approximations. IO‐3D allows comparisons of beamlet, multisegment, and conformal plans optimized using the same cost functions, dose points, and plan evaluation metrics, so quantitative comparisons are straightforward. Here, comparisons of IO‐3D and beamlet IMRT techniques are presented for breast, brain, liver, and lung plans. Results: IO‐3D achieves high quality results comparable to beamlet IMRT, for many situations. Though the IO‐3D plans have many fewer degrees of freedom for the optimization, this work finds that IO‐3D plans with only one to two segments per beam are dosimetrically equivalent (or nearly so) to the beamlet IMRT plans, for several sites. IO‐3D also reduces plan complexity significantly. Here, monitor units per fraction (MU/Fx) for IO‐3D plans were 22%–68% less than that for the 1 cm × 1 cm beamlet IMRT plans and 72%–84% than the 0.5 cm × 0.5 cm beamlet IMRT plans. Conclusions: The unique IO‐3D algorithm illustrates that inverse planning can achieve high quality 3D conformal plans equivalent (or nearly so) to unconstrained beamlet IMRT plans, for many sites. IO‐3D thus provides the potential to optimize flat or few‐segment 3DCRT plans, creating less complex optimized plans which are efficient and simple to deliver. The less complex IO‐3D plans have operational advantages for scenarios including adaptive replanning, cases with interfraction and intrafraction motion, and pediatric patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
5秒前
11秒前
空2完成签到 ,获得积分0
20秒前
叶也完成签到 ,获得积分10
45秒前
47秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
传奇3应助芒果瑞纳冰采纳,获得10
1分钟前
1分钟前
Chouvikin完成签到,获得积分10
1分钟前
1分钟前
桐夜完成签到 ,获得积分10
1分钟前
2分钟前
lqhccww发布了新的文献求助10
2分钟前
2分钟前
2分钟前
zilt1109发布了新的文献求助10
2分钟前
Orange应助龙06采纳,获得30
2分钟前
量子星尘发布了新的文献求助10
2分钟前
3分钟前
3分钟前
chenyue233完成签到,获得积分10
3分钟前
怪僻完成签到 ,获得积分10
3分钟前
郗妫完成签到 ,获得积分10
3分钟前
3分钟前
丘比特应助溜溜采纳,获得10
3分钟前
4分钟前
4分钟前
yxl要顺利毕业_发6篇C完成签到,获得积分10
4分钟前
4分钟前
天天快乐应助浮生六记采纳,获得10
4分钟前
5分钟前
5分钟前
溜溜发布了新的文献求助10
5分钟前
zsmj23完成签到 ,获得积分0
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509664
求助须知:如何正确求助?哪些是违规求助? 4604470
关于积分的说明 14489810
捐赠科研通 4539307
什么是DOI,文献DOI怎么找? 2487442
邀请新用户注册赠送积分活动 1469860
关于科研通互助平台的介绍 1442070