Examining the feasibility of prediction models by monitoring data and management data for bioaerosols inside office buildings

室内生物气溶胶 环境科学 生物气溶胶 室内空气质量 线性回归 自然通风 回归分析 通风(建筑) 气象学 环境工程 计算机科学 气溶胶 地理 机器学习
作者
Chwan-Lu Tseng,Huang-Chin Wang,Naiyu Xiao,Yu‐Min Chang
出处
期刊:Building and Environment [Elsevier BV]
卷期号:46 (12): 2578-2589 被引量:19
标识
DOI:10.1016/j.buildenv.2011.06.016
摘要

Exposure to bioagents can cause several health problems, including acute allergies, infectious diseases, and myctoxicosis. Nevertheless, all conventional methods for measuring airborne bioaerosols have significant limitations such as high cost, prolonged measurement time, and discontinuous measurements. This work develops a simple and cost-effective method for indoor airborne bioaerosols that uses monitoring data such as coarse particle (PM10), fine particle (PM2.5), and carbon dioxide (CO2) concentrations, and temperature (Temp), and relative humidity (RH) both indoors and outdoors. Some IAQ management data, such as the number of stories, air ventilation types, air exchange rate, potential indoor particulate sources, and population density were quantified in this study. Both monitoring data and management data are considered simultaneously, and multiple linear regression and nonlinear regression analyses are applied to develop prediction models for bacteria and fungi concentrations in office buildings. The indoor and outdoor air qualities of 37 office buildings in Taipei, Taiwan were sampled to develop the prediction models for buildings in Taipei Metropolitan. Results showed that the predictions of a single office building were better than those of all office buildings in the city. The prediction using multiple linear regression models performed best for both indoors bacteria and fungi concentrations. Furthermore, analytical results show that the prediction with both monitoring and management data inputs were better than with monitoring data only. This real-time prediction model can serve as a simple and cost-effective tool for predicting bioaerosol concentrations to identify and prevent IAQ problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开摆v完成签到,获得积分10
刚刚
刚刚
燕儿发布了新的文献求助10
刚刚
lala完成签到,获得积分10
1秒前
jerry完成签到,获得积分10
1秒前
1秒前
妍妍研研完成签到 ,获得积分10
2秒前
漫步云端发布了新的文献求助10
2秒前
li完成签到 ,获得积分10
3秒前
乐乐应助lll采纳,获得10
3秒前
yoneyamai发布了新的文献求助10
3秒前
听蝉完成签到,获得积分10
4秒前
英俊001发布了新的文献求助10
4秒前
RRRRRRuby发布了新的文献求助10
4秒前
果果发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
大君哥发布了新的文献求助10
6秒前
lecho完成签到,获得积分10
7秒前
FashionBoy应助csm采纳,获得10
7秒前
江江发布了新的文献求助10
7秒前
8秒前
8秒前
豆乳嘟嘟完成签到,获得积分10
8秒前
希望天下0贩的0应助11采纳,获得10
9秒前
9秒前
9秒前
ecchaos发布了新的文献求助10
9秒前
Lily完成签到,获得积分10
9秒前
CYL07完成签到 ,获得积分10
9秒前
单薄的西装应助流萤采纳,获得10
11秒前
11秒前
小u发布了新的文献求助10
11秒前
杨一发布了新的文献求助10
12秒前
lll完成签到,获得积分10
12秒前
在水一方应助袁气小笼包采纳,获得10
13秒前
wanghsuo99发布了新的文献求助10
13秒前
Lily发布了新的文献求助30
14秒前
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951641
求助须知:如何正确求助?哪些是违规求助? 3497078
关于积分的说明 11085803
捐赠科研通 3227504
什么是DOI,文献DOI怎么找? 1784450
邀请新用户注册赠送积分活动 868519
科研通“疑难数据库(出版商)”最低求助积分说明 801154