Examining the feasibility of prediction models by monitoring data and management data for bioaerosols inside office buildings

室内生物气溶胶 环境科学 生物气溶胶 室内空气质量 线性回归 自然通风 回归分析 通风(建筑) 气象学 环境工程 计算机科学 气溶胶 地理 机器学习
作者
Chwan-Lu Tseng,Huang-Chin Wang,Naiyu Xiao,Yu‐Min Chang
出处
期刊:Building and Environment [Elsevier]
卷期号:46 (12): 2578-2589 被引量:19
标识
DOI:10.1016/j.buildenv.2011.06.016
摘要

Exposure to bioagents can cause several health problems, including acute allergies, infectious diseases, and myctoxicosis. Nevertheless, all conventional methods for measuring airborne bioaerosols have significant limitations such as high cost, prolonged measurement time, and discontinuous measurements. This work develops a simple and cost-effective method for indoor airborne bioaerosols that uses monitoring data such as coarse particle (PM10), fine particle (PM2.5), and carbon dioxide (CO2) concentrations, and temperature (Temp), and relative humidity (RH) both indoors and outdoors. Some IAQ management data, such as the number of stories, air ventilation types, air exchange rate, potential indoor particulate sources, and population density were quantified in this study. Both monitoring data and management data are considered simultaneously, and multiple linear regression and nonlinear regression analyses are applied to develop prediction models for bacteria and fungi concentrations in office buildings. The indoor and outdoor air qualities of 37 office buildings in Taipei, Taiwan were sampled to develop the prediction models for buildings in Taipei Metropolitan. Results showed that the predictions of a single office building were better than those of all office buildings in the city. The prediction using multiple linear regression models performed best for both indoors bacteria and fungi concentrations. Furthermore, analytical results show that the prediction with both monitoring and management data inputs were better than with monitoring data only. This real-time prediction model can serve as a simple and cost-effective tool for predicting bioaerosol concentrations to identify and prevent IAQ problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小丸子发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
monocle发布了新的文献求助10
7秒前
可爱的函函应助星辰采纳,获得10
7秒前
霸气的代云完成签到 ,获得积分10
8秒前
8秒前
9秒前
9秒前
光芒万丈发布了新的文献求助10
12秒前
13秒前
13秒前
Owen应助踏实语蓉采纳,获得10
13秒前
专注大门发布了新的文献求助10
14秒前
cc发布了新的文献求助10
15秒前
a1459196273完成签到,获得积分10
17秒前
王小嘻发布了新的文献求助30
17秒前
Aaernan发布了新的文献求助10
18秒前
草玉梅皂苷完成签到,获得积分10
19秒前
小二郎发布了新的文献求助10
20秒前
20秒前
bkagyin应助樊书南采纳,获得10
20秒前
沉淀中的黄绿医生完成签到,获得积分10
21秒前
21秒前
武俊怡完成签到,获得积分10
21秒前
充电宝应助Becky采纳,获得10
22秒前
今后应助FUNG采纳,获得10
23秒前
我是老大应助研0被骂儿采纳,获得10
23秒前
飞飞发布了新的文献求助10
26秒前
可靠的大美完成签到,获得积分10
26秒前
我是老大应助月牙超级甜采纳,获得10
30秒前
30秒前
淡定的翠霜关注了科研通微信公众号
30秒前
舒心的青槐完成签到 ,获得积分10
31秒前
火星上以亦完成签到,获得积分10
32秒前
33秒前
背后的问寒完成签到,获得积分10
34秒前
Soul完成签到 ,获得积分20
34秒前
Akim应助小二郎采纳,获得10
37秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
《粉体与多孔固体材料的吸附原理、方法及应用》(需要中文翻译版,化学工业出版社,陈建,周力,王奋英等译) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3084836
求助须知:如何正确求助?哪些是违规求助? 2737894
关于积分的说明 7547256
捐赠科研通 2387494
什么是DOI,文献DOI怎么找? 1265999
科研通“疑难数据库(出版商)”最低求助积分说明 613212
版权声明 598429