A retrospective analysis using deep-learning models for prediction of survival outcome and benefit of adjuvant chemotherapy in stage II/III colorectal cancer

医学 内科学 肿瘤科 血液学 结直肠癌 辅助化疗 阶段(地层学) 化疗 回顾性队列研究 佐剂 结果(博弈论) 生存分析 癌症 生物 古生物学 数学 数理经济学 乳腺癌
作者
Xingyu Li,Jitendra Jonnagaddala,Shuhua Yang,Hong Zhang,Steven Xu
出处
期刊:Journal of Cancer Research and Clinical Oncology [Springer Science+Business Media]
卷期号:148 (8): 1955-1963 被引量:12
标识
DOI:10.1007/s00432-022-03976-5
摘要

Most of Stage II/III colorectal cancer (CRC) patients can be cured by surgery alone, and only certain CRC patients benefit from adjuvant chemotherapy. Risk stratification based on deep-learning from haematoxylin and eosin (H&E) images has been postulated as a potential predictive biomarker for benefit from adjuvant chemotherapy. However, very limited success has been achieved in using biomarkers, including deep-learning-based markers, to facilitate the decision for adjuvant chemotherapy despite recent advances of artificial intelligence.We trained and internally validated CRCNet using 780 Stage II/III CRC patients from Molecular and Cellular Oncology. Independent external validation of the model was performed using 337 Stage II/III CRC patients from The Cancer Genome Atlas (TCGA).CRCNet stratified the patients into high, medium, and low-risk subgroups. Multivariate Cox regression analyses confirmed that CRCNet risk groups are statistically significant after adjusting for existing risk factors. The high-risk subgroup significantly benefits from adjuvant chemotherapy. A hazard ratio (chemo-treated vs untreated) of 0.2 (95% Confidence Interval (CI), 0.05-0.65; P = 0.009) and 0.6 (95% CI 0.42-0.98; P = 0.038) are observed in the TCGA and MCO Fluorouracil-treated patients, respectively. Conversely, no significant benefit from chemotherapy is observed in the low- and medium-risk groups (P = 0.2-1).The retrospective analysis provides further evidence that H&E image-based biomarkers may potentially be of great use in delivering treatments following surgery for Stage II/III CRC, improving patient survival, and avoiding unnecessary treatment and associated toxicity, and warrants further validation on other datasets and prospective confirmation in clinical trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
无情豪英完成签到 ,获得积分10
1秒前
Laneyliu发布了新的文献求助10
2秒前
时丶倾完成签到,获得积分10
3秒前
Ma发布了新的文献求助10
3秒前
4秒前
王文帝发布了新的文献求助10
4秒前
彦卿完成签到 ,获得积分20
4秒前
lalala发布了新的文献求助10
5秒前
drsxtang发布了新的文献求助10
5秒前
温柔树叶完成签到,获得积分20
5秒前
5秒前
小二郎应助三岁半采纳,获得10
7秒前
Aow发布了新的文献求助10
7秒前
北海发布了新的文献求助100
7秒前
啊实打实的卡完成签到,获得积分10
8秒前
彭于晏应助风登楼采纳,获得10
9秒前
wsd发布了新的文献求助10
9秒前
11秒前
TGU2331161488应助王文帝采纳,获得10
11秒前
11秒前
Ma完成签到,获得积分10
11秒前
11秒前
充电宝应助摸鱼划水采纳,获得10
11秒前
11秒前
12秒前
12秒前
13秒前
犹豫梨愁完成签到,获得积分10
13秒前
13秒前
羞答答完成签到,获得积分10
14秒前
猫咪老师应助Lrrr采纳,获得30
15秒前
15秒前
麦苳发布了新的文献求助30
15秒前
syl发布了新的文献求助10
16秒前
jzm发布了新的文献求助10
16秒前
16秒前
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
Jasper应助科研通管家采纳,获得10
17秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3769018
求助须知:如何正确求助?哪些是违规求助? 3314015
关于积分的说明 10170296
捐赠科研通 3028944
什么是DOI,文献DOI怎么找? 1662218
邀请新用户注册赠送积分活动 794750
科研通“疑难数据库(出版商)”最低求助积分说明 756372