亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deformable MR-CT image registration using an unsupervised, dual-channel network for neurosurgical guidance

Sørensen–骰子系数 人工智能 图像配准 计算机科学 计算机视觉 掷骰子 模式识别(心理学) 图像(数学) 数学 图像分割 几何学
作者
Runze Han,Craig Jones,J. Lee,Pengwei Wu,Prasad Vagdargi,Ali Uneri,Patrick A. Helm,M Luciano,William S. Anderson,Jeffrey H. Siewerdsen
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:75: 102292-102292 被引量:27
标识
DOI:10.1016/j.media.2021.102292
摘要

The accuracy of minimally invasive, intracranial neurosurgery can be challenged by deformation of brain tissue - e.g., up to 10 mm due to egress of cerebrospinal fluid during neuroendoscopic approach. We report an unsupervised, deep learning-based registration framework to resolve such deformations between preoperative MR and intraoperative CT with fast runtime for neurosurgical guidance.The framework incorporates subnetworks for MR and CT image synthesis with a dual-channel registration subnetwork (with synthesis uncertainty providing spatially varying weights on the dual-channel loss) to estimate a diffeomorphic deformation field from both the MR and CT channels. An end-to-end training is proposed that jointly optimizes both the synthesis and registration subnetworks. The proposed framework was investigated using three datasets: (1) paired MR/CT with simulated deformations; (2) paired MR/CT with real deformations; and (3) a neurosurgery dataset with real deformation. Two state-of-the-art methods (Symmetric Normalization and VoxelMorph) were implemented as a basis of comparison, and variations in the proposed dual-channel network were investigated, including single-channel registration, fusion without uncertainty weighting, and conventional sequential training of the synthesis and registration subnetworks.The proposed method achieved: (1) Dice coefficient = 0.82±0.07 and TRE = 1.2 ± 0.6 mm on paired MR/CT with simulated deformations; (2) Dice coefficient = 0.83 ± 0.07 and TRE = 1.4 ± 0.7 mm on paired MR/CT with real deformations; and (3) Dice = 0.79 ± 0.13 and TRE = 1.6 ± 1.0 mm on the neurosurgery dataset with real deformations. The dual-channel registration with uncertainty weighting demonstrated superior performance (e.g., TRE = 1.2 ± 0.6 mm) compared to single-channel registration (TRE = 1.6 ± 1.0 mm, p < 0.05 for CT channel and TRE = 1.3 ± 0.7 mm for MR channel) and dual-channel registration without uncertainty weighting (TRE = 1.4 ± 0.8 mm, p < 0.05). End-to-end training of the synthesis and registration subnetworks also improved performance compared to the conventional sequential training strategy (TRE = 1.3 ± 0.6 mm). Registration runtime with the proposed network was ∼3 s.The deformable registration framework based on dual-channel MR/CT registration with spatially varying weights and end-to-end training achieved geometric accuracy and runtime that was superior to state-of-the-art baseline methods and various ablations of the proposed network. The accuracy and runtime of the method may be compatible with the requirements of high-precision neurosurgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助高小羊采纳,获得10
38秒前
48秒前
高小羊发布了新的文献求助10
51秒前
打打应助郜南烟采纳,获得10
51秒前
高小羊完成签到,获得积分10
1分钟前
LouieHuang完成签到,获得积分20
1分钟前
2分钟前
郜南烟发布了新的文献求助10
2分钟前
wanci应助郜南烟采纳,获得10
2分钟前
上官若男应助zhangyimg采纳,获得10
2分钟前
2分钟前
Lorin完成签到 ,获得积分10
2分钟前
2分钟前
zhangyimg发布了新的文献求助10
2分钟前
科目三应助zhangyimg采纳,获得10
3分钟前
gszy1975完成签到,获得积分10
3分钟前
圆圆的波仔发布了新的文献求助100
3分钟前
JamesPei应助科研通管家采纳,获得10
4分钟前
郗妫完成签到,获得积分10
4分钟前
5分钟前
郜南烟发布了新的文献求助10
5分钟前
Venus完成签到 ,获得积分10
7分钟前
在水一方应助chenyuns采纳,获得30
7分钟前
JACk完成签到 ,获得积分10
7分钟前
7分钟前
chenyuns发布了新的文献求助30
7分钟前
爱静静应助李伟采纳,获得10
7分钟前
8分钟前
zhangyimg发布了新的文献求助10
8分钟前
8分钟前
郜南烟发布了新的文献求助10
9分钟前
斯文败类应助郜南烟采纳,获得10
9分钟前
思源应助chenyuns采纳,获得20
9分钟前
Akim应助chenyuns采纳,获得20
9分钟前
领导范儿应助圆圆的波仔采纳,获得10
10分钟前
10分钟前
10分钟前
李爱国应助怕孤单的灵寒采纳,获得10
10分钟前
圆圆的波仔完成签到,获得积分10
11分钟前
11分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146771
求助须知:如何正确求助?哪些是违规求助? 2798063
关于积分的说明 7826621
捐赠科研通 2454573
什么是DOI,文献DOI怎么找? 1306394
科研通“疑难数据库(出版商)”最低求助积分说明 627708
版权声明 601527