Graph neural networks in node classification: survey and evaluation

计算机科学 人工智能 卷积神经网络 人工神经网络 深度学习 图形 机器学习 节点(物理) 理论计算机科学 结构工程 工程类
作者
Shunxin Xiao,Shiping Wang,Yuanfei Dai,Wenzhong Guo
出处
期刊:Journal of Machine Vision and Applications [Springer Nature]
卷期号:33 (1) 被引量:34
标识
DOI:10.1007/s00138-021-01251-0
摘要

Neural networks have been proved efficient in improving many machine learning tasks such as convolutional neural networks and recurrent neural networks for computer vision and natural language processing, respectively. However, the inputs of these deep learning paradigms all belong to the type of Euclidean structure, e.g., images or texts. It is difficult to directly apply these neural networks to graph-based applications such as node classification since graph is a typical non-Euclidean structure in machine learning domain. Graph neural networks are designed to deal with the particular graph-based input and have received great developments because of more and more research attention. In this paper, we provide a comprehensive review about applying graph neural networks to the node classification task. First, the state-of-the-art methods are discussed and divided into three main categories: convolutional mechanism, attention mechanism and autoencoder mechanism. Afterward, extensive comparative experiments are conducted on several benchmark datasets, including citation networks and co-author networks, to compare the performance of different methods with diverse evaluation metrics. Finally, several suggestions are provided for future research based on the experimental results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助aaaaa采纳,获得10
刚刚
张张发布了新的文献求助10
1秒前
1秒前
1秒前
高新慧发布了新的文献求助10
1秒前
胡图图发布了新的文献求助10
1秒前
RMgX发布了新的文献求助10
2秒前
3秒前
DY完成签到,获得积分0
3秒前
3秒前
利好完成签到 ,获得积分10
4秒前
4秒前
领导范儿应助一道光采纳,获得10
4秒前
缺牙巴完成签到,获得积分10
4秒前
Yy发布了新的文献求助10
4秒前
情怀应助柚子采纳,获得10
4秒前
食杂砸发布了新的文献求助10
5秒前
可爱的函函应助麦大林采纳,获得10
5秒前
小白完成签到 ,获得积分10
5秒前
qwe123发布了新的文献求助10
5秒前
梁小乐发布了新的文献求助10
6秒前
hhh发布了新的文献求助10
7秒前
九霄发布了新的文献求助10
7秒前
8秒前
简小小发布了新的文献求助10
8秒前
李爱国应助背包包包采纳,获得10
9秒前
9秒前
斯文败类应助zkz采纳,获得10
9秒前
9秒前
9秒前
10秒前
11秒前
11秒前
11秒前
ucas大菠萝完成签到,获得积分10
11秒前
12秒前
Monest发布了新的文献求助30
12秒前
12秒前
12秒前
科研通AI6应助芒果味采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648073
求助须知:如何正确求助?哪些是违规求助? 4774828
关于积分的说明 15042676
捐赠科研通 4807153
什么是DOI,文献DOI怎么找? 2570560
邀请新用户注册赠送积分活动 1527333
关于科研通互助平台的介绍 1486398