Graph neural networks in node classification: survey and evaluation

计算机科学 人工智能 卷积神经网络 人工神经网络 深度学习 图形 机器学习 节点(物理) 理论计算机科学 结构工程 工程类
作者
Shunxin Xiao,Shiping Wang,Yuanfei Dai,Wenzhong Guo
出处
期刊:Journal of Machine Vision and Applications [Springer Nature]
卷期号:33 (1) 被引量:34
标识
DOI:10.1007/s00138-021-01251-0
摘要

Neural networks have been proved efficient in improving many machine learning tasks such as convolutional neural networks and recurrent neural networks for computer vision and natural language processing, respectively. However, the inputs of these deep learning paradigms all belong to the type of Euclidean structure, e.g., images or texts. It is difficult to directly apply these neural networks to graph-based applications such as node classification since graph is a typical non-Euclidean structure in machine learning domain. Graph neural networks are designed to deal with the particular graph-based input and have received great developments because of more and more research attention. In this paper, we provide a comprehensive review about applying graph neural networks to the node classification task. First, the state-of-the-art methods are discussed and divided into three main categories: convolutional mechanism, attention mechanism and autoencoder mechanism. Afterward, extensive comparative experiments are conducted on several benchmark datasets, including citation networks and co-author networks, to compare the performance of different methods with diverse evaluation metrics. Finally, several suggestions are provided for future research based on the experimental results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助科研通管家采纳,获得10
刚刚
刀剑完成签到,获得积分20
刚刚
pluto应助科研通管家采纳,获得10
刚刚
刚刚
子车茗应助科研通管家采纳,获得20
刚刚
顾矜应助科研通管家采纳,获得10
刚刚
情怀应助科研通管家采纳,获得10
刚刚
李健应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
pluto应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得30
1秒前
烟花应助科研通管家采纳,获得10
1秒前
pluto应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
1101592875应助科研通管家采纳,获得10
1秒前
shhoing应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
刀剑发布了新的文献求助10
4秒前
5秒前
5秒前
小二郎应助积极的夏天采纳,获得30
7秒前
123发布了新的文献求助10
9秒前
9秒前
11秒前
shaohua2011发布了新的文献求助10
11秒前
22222发布了新的文献求助10
12秒前
Charon发布了新的文献求助10
15秒前
桐桐应助ray采纳,获得10
15秒前
17秒前
qq完成签到 ,获得积分10
21秒前
哈哈哈完成签到 ,获得积分10
21秒前
22秒前
一颗蘑古力完成签到 ,获得积分10
25秒前
落尘完成签到 ,获得积分10
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558034
求助须知:如何正确求助?哪些是违规求助? 4642985
关于积分的说明 14670251
捐赠科研通 4584484
什么是DOI,文献DOI怎么找? 2514893
邀请新用户注册赠送积分活动 1489026
关于科研通互助平台的介绍 1459655