Graph neural networks in node classification: survey and evaluation

计算机科学 人工智能 卷积神经网络 人工神经网络 深度学习 图形 机器学习 节点(物理) 理论计算机科学 结构工程 工程类
作者
Shunxin Xiao,Shiping Wang,Yuanfei Dai,Wenzhong Guo
出处
期刊:Journal of Machine Vision and Applications [Springer Nature]
卷期号:33 (1) 被引量:34
标识
DOI:10.1007/s00138-021-01251-0
摘要

Neural networks have been proved efficient in improving many machine learning tasks such as convolutional neural networks and recurrent neural networks for computer vision and natural language processing, respectively. However, the inputs of these deep learning paradigms all belong to the type of Euclidean structure, e.g., images or texts. It is difficult to directly apply these neural networks to graph-based applications such as node classification since graph is a typical non-Euclidean structure in machine learning domain. Graph neural networks are designed to deal with the particular graph-based input and have received great developments because of more and more research attention. In this paper, we provide a comprehensive review about applying graph neural networks to the node classification task. First, the state-of-the-art methods are discussed and divided into three main categories: convolutional mechanism, attention mechanism and autoencoder mechanism. Afterward, extensive comparative experiments are conducted on several benchmark datasets, including citation networks and co-author networks, to compare the performance of different methods with diverse evaluation metrics. Finally, several suggestions are provided for future research based on the experimental results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怡然的怜烟应助yaoqing采纳,获得30
刚刚
刚刚
jiang003发布了新的文献求助10
1秒前
Ciel完成签到 ,获得积分10
1秒前
懦弱的冰岚完成签到,获得积分10
1秒前
认真盼夏发布了新的文献求助10
1秒前
CR7应助无情干饭崽采纳,获得20
1秒前
科研通AI6应助mirandaaa采纳,获得30
1秒前
2秒前
ding应助花花花花采纳,获得10
2秒前
2秒前
善学以致用应助Duolalala采纳,获得30
2秒前
orixero应助巴旦木采纳,获得10
3秒前
婷婷发布了新的文献求助10
3秒前
勤劳的访烟完成签到,获得积分10
3秒前
3秒前
H2O完成签到,获得积分10
4秒前
starry南鸢完成签到 ,获得积分10
4秒前
5秒前
5秒前
6秒前
6秒前
7秒前
无聊的饼干完成签到,获得积分10
7秒前
7秒前
8秒前
ysxl发布了新的文献求助10
9秒前
10秒前
搞怪孤丝完成签到 ,获得积分10
10秒前
11秒前
小马甲应助认真小海豚采纳,获得10
12秒前
年轻葶发布了新的文献求助10
12秒前
超级宛白应助Aqk9采纳,获得30
13秒前
宇宙无敌完成签到 ,获得积分10
13秒前
多多发布了新的文献求助10
13秒前
独特思真完成签到,获得积分10
14秒前
沉默寄凡发布了新的文献求助10
14秒前
15秒前
现实世界npc完成签到 ,获得积分10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478095
求助须知:如何正确求助?哪些是违规求助? 4579824
关于积分的说明 14371025
捐赠科研通 4508054
什么是DOI,文献DOI怎么找? 2470401
邀请新用户注册赠送积分活动 1457273
关于科研通互助平台的介绍 1431249