阳极
材料科学
法拉第效率
复合数
石墨
涂层
复合材料
多孔性
化学工程
电解质
电极
工程类
物理化学
化学
作者
Moon Kyu Cho,Seung Jae You,Jung Gyu Woo,Jung‐Chul An,Sujin Kang,Hyun‐Wook Lee,Ji Hoon Kim,Cheol‐Min Yang,Yong Jung Kim
标识
DOI:10.1016/j.compositesb.2021.108799
摘要
Si-based Li-ion battery (LIB) anode materials often possess porous structures to accommodate the intrinsic volumetric expansion of Si upon cycling. However, the porous structure may cause poor initial coulombic efficiency (ICE), inadequate cycle life due to the continuous generation of a solid-electrolyte interface, and incompatibility with calendaring processes. To overcome these issues, we designed an optimized Si/C (P–Si/C) composite anode consisting of Si nanoparticles, graphite, and pitch, with a highly densified structure, suppressing Si expansion and enabling compatibility with the calendaring process. To further enhance the cycle life, the surface of the P–Si/C composite was modified by chemical vapor deposition using CH4 gas (C–Si/C). The P–Si/C anode exhibited a high ICE of 88.0% with a rapid surge up to 99.0% after only the 4th cycle. The C–Si/C anode presented an improved capacity retention of 49.5% after the 39th cycle, compared with 46.0% for the P–Si/C anode after the 31st cycle, while maintaining the same ICE. Moreover, anodes prepared with 8 wt% P–Si/C or C–Si/C and 92 wt% graphite (m-P-Si/C and m-C-Si/C, respectively) showed higher capacity retentions compared with pure Si/C anodes. The m-C-Si/C anode exhibited a higher capacity retention of 80.1% after the 40th cycle, compared with 71.2% for the m-P-Si/C anode. The m-C-Si/C anode also displayed an extremely low expansion rate and the majority of the expansion was elastically recovered. This C–Si/C composite provided a controllable means to modify the performance of LIBs by simple mixing with graphite.
科研通智能强力驱动
Strongly Powered by AbleSci AI