Species delimitation with distinct methods based on molecular data to elucidate species boundaries in the Cycas taiwaniana complex (Cycadaceae)

生物 溯祖理论 物种复合体 进化生物学 分类单元 人口 系统地理学 系统发育学 分子系统发育学 生物地理学 系统发育树 生态学 遗传学 基因 社会学 人口学
作者
Xiuyan Feng,Xinhui Wang,Yu–Chung Chiang,Shuguang Jian,Xun Gong
出处
期刊:Taxon [Wiley]
卷期号:70 (3): 477-491 被引量:10
标识
DOI:10.1002/tax.12457
摘要

Abstract Accurately delimiting species boundaries is of critical importance in many areas of biology including population genetics, conservation biology, biogeography, and evolutionary biology because inaccurate species delimitation may significantly affect downstream inferences. The Cycas taiwaniana complex consists of six morphologically similar taxa ( C. changjiangensis , C. fairylakea , C. hainanensis , C. lingshuigensis , C. szechuanensis , C. taiwaniana ) that are distributed throughout a narrow region of South China. The members of this complex and the taxonomic status of their names have long been debated. In this study, combining morphological characteristics, we employed three distinct approaches to delimit species: haplotype phylogeny delimitation, Bayesian coalescent species delimitation (BPP), and population cluster analyses. To delimitate the species boundaries within the C. taiwaniana complex, we used 4 plastid intergenic spacers (cpDNA), 4 nuclear genes (nDNA) and 10 microsatellites. All three approaches revealed the presence of two distinct species in the C. taiwaniana complex under the unified species concept, C. taiwaniana and C. szechuanensis , largely corresponding to morphological differentiation. Cycas fairylakea was a synonym for C. szechuanensis , and the other three taxa were synonyms for C. taiwaniana . Species delimitation using molecular data was consistent with our preliminary morphological inference. This study thus optimally resolved the species boundaries and taxonomic treatment of the C. taiwaniana complex from an integrated perspective using multiple sources of molecular data and distinct analytical approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
乐乐应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
丘比特应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
1秒前
李霞发布了新的文献求助10
1秒前
1秒前
XYJ1完成签到,获得积分10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
1秒前
浮游应助科研通管家采纳,获得10
1秒前
2秒前
2秒前
赘婿应助李善聪采纳,获得10
2秒前
爆米花应助赵小哼采纳,获得10
2秒前
皮皮完成签到 ,获得积分20
2秒前
2秒前
Orange应助科研通管家采纳,获得80
2秒前
3秒前
Orange应助科研通管家采纳,获得10
3秒前
咪路发布了新的文献求助10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
林声晚发布了新的文献求助10
3秒前
DSFSR应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
3秒前
香蕉觅云应助科研通管家采纳,获得30
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
无敌最俊朗完成签到,获得积分0
4秒前
ding应助科研通管家采纳,获得10
4秒前
4秒前
CipherSage应助科研通管家采纳,获得30
4秒前
4秒前
4秒前
明理的小蜜蜂完成签到 ,获得积分10
4秒前
4秒前
4秒前
华仔应助林子采纳,获得10
4秒前
SJD完成签到,获得积分0
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261224
求助须知:如何正确求助?哪些是违规求助? 4422343
关于积分的说明 13765975
捐赠科研通 4296787
什么是DOI,文献DOI怎么找? 2357517
邀请新用户注册赠送积分活动 1353903
关于科研通互助平台的介绍 1315103