作者
Xu Zhang,Ling Ni,Yamin Zhu,Ning Liu,Daming Fan,Mingfu Wang,Yueliang Zhao
摘要
In this research, we studied the inhibitory mechanism of quercetin, one popular phenolic compound, against aldehyde formation in thermally treated soybean oil. It was found that quercetin reduced unsaturated aldehyde formation significantly, with the inhibitory effect decreased with the extension of the heating time. Meanwhile, quercetin had minimum effects on the fatty acid profile compared to untreated samples. Some new phenolic derivatives were formed in thermally treated soybean oil with quercetin, further analyzed by liquid chromatography–tandem mass spectrometry, and compared to newly synthesized derivatives (characterized by mass spectrometry and nuclear magnetic resonance spectroscopy). On the basis of their chemical structures, we proposed that quercetin reacted with 13-oxo-octadecadienoic acid, 10-oxo-hexadecenoic acid, and 10-oxo-octadecenoic acid formed from peroxidation of linoleic acid, palmitoleic acid, and oleic acid, respectively, to inhibit aldehyde formation. In addition, newly formed quercetin-3-O-hexanoate, quercetin-3-O-heptanoate, and quercetin-3-O-nonanoate showed weaker 2,2-diphenyl-1-picrylhydrazyl and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radical cation scavenging activity and weaker antioxidant activity in soybean oil, which explained the decreased inhibitory activity of quercetin against aldehyde formation during heat treatment. More interesting, quercetin-3-O-hexanoate showed improved cellular antioxidant activity compared to the parent quercetin. Overall, quercetin inhibited the formation of lipid oxidation products in thermally treated soybean oil by reacting with early intermediates in the lipid oxidation reaction, and quercetin derivatives formed in the process could be with enhanced cellular antioxidant activity. Our results provide novel insight into the inhibitory mechanism of quercetin against the formation of lipid oxidation products.