Computational Variation: An Underinvestigated Quantitative Variability Caused by Automated Data Processing in Untargeted Metabolomics

代谢组学 工作流程 化学 变化(天文学) 变异系数 计算机科学 样品(材料) 样本量测定 生物系统 色谱法 统计 数据库 数学 天体物理学 生物 物理
作者
Huaxu Yu,Ying Chen,Tao Huan
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:93 (25): 8719-8728 被引量:14
标识
DOI:10.1021/acs.analchem.0c03381
摘要

Computational tools are commonly used in untargeted metabolomics to automatically extract metabolic features from liquid chromatography-mass spectrometry (LC-MS) raw data. However, due to the incapability of software to accurately determine chromatographic peak heights/areas for features with poor chromatographic peak shape, automated data processing in untargeted metabolomics faces additional quantitative variation (i.e., computational variation) besides the well-recognized analytical and biological variations. In this work, using multiple biological samples, we investigated how experimental factors, including sample concentrations, LC separation columns, and data processing programs, contribute to computational variation. For example, we found that the peak height (PH)-based quantification is more precise when MS-DIAL was used for data processing. We further systematically compared the different patterns of computational variation between PH- and peak area (PA)-based quantitative measurements. Our results suggest that the magnitude of computational variation is highly consistent at a given concentration. Hence, we proposed a quality control (QC) sample-based correction workflow to minimize computational variation by automatically selecting PH or PA-based measurement for each intensity value. This bioinformatic solution was demonstrated in a metabolomic comparison of leukemia patients before and after chemotherapy. Our novel workflow can be effectively applied on 652 out of 915 metabolic features, and over 31% (206 out of 652) of corrected features showed distinctly changed statistical significance. Overall, this work highlights computational variation, a considerable but underinvestigated quantitative variability in omics-scale quantitative analyses. In addition, the proposed bioinformatic solution can minimize computational variation, thus providing a more confident statistical comparison among biological groups in quantitative metabolomics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胡通才是ke研通完成签到,获得积分10
刚刚
小乐儿~发布了新的文献求助10
1秒前
1秒前
Akim应助林家小弟采纳,获得10
2秒前
2秒前
2秒前
2秒前
3秒前
8R60d8应助wjx采纳,获得10
4秒前
hwl26发布了新的文献求助10
4秒前
5秒前
仙道彰-7发布了新的文献求助10
5秒前
wyd完成签到,获得积分10
5秒前
橘络完成签到 ,获得积分10
5秒前
6秒前
慕青应助时迁采纳,获得10
6秒前
6秒前
认真的可冥完成签到,获得积分10
7秒前
A辉发布了新的文献求助10
7秒前
IP41320完成签到,获得积分20
7秒前
开开心心完成签到,获得积分20
8秒前
呜啦啦发布了新的文献求助10
8秒前
8秒前
养乐多完成签到,获得积分10
8秒前
xiaoan发布了新的文献求助10
8秒前
良辰应助传统的白桃采纳,获得10
8秒前
圈圈完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
得到发布了新的文献求助10
10秒前
所所应助小乐儿~采纳,获得10
10秒前
按住心动发布了新的文献求助10
10秒前
养乐多发布了新的文献求助10
11秒前
XXaaxxxx发布了新的文献求助10
11秒前
我的阳光发布了新的文献求助10
12秒前
单薄的誉完成签到,获得积分10
12秒前
Lucas应助无或采纳,获得10
13秒前
JasonSun发布了新的文献求助10
14秒前
万能图书馆应助summuryi采纳,获得10
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
錢鍾書楊絳親友書札 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3297279
求助须知:如何正确求助?哪些是违规求助? 2932744
关于积分的说明 8458881
捐赠科研通 2605477
什么是DOI,文献DOI怎么找? 1422392
科研通“疑难数据库(出版商)”最低求助积分说明 661383
邀请新用户注册赠送积分活动 644677