清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Computational Variation: An Underinvestigated Quantitative Variability Caused by Automated Data Processing in Untargeted Metabolomics

代谢组学 工作流程 化学 变化(天文学) 变异系数 计算机科学 样品(材料) 样本量测定 生物系统 色谱法 统计 数据库 数学 天体物理学 生物 物理
作者
Huaxu Yu,Ying Chen,Tao Huan
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:93 (25): 8719-8728 被引量:17
标识
DOI:10.1021/acs.analchem.0c03381
摘要

Computational tools are commonly used in untargeted metabolomics to automatically extract metabolic features from liquid chromatography-mass spectrometry (LC-MS) raw data. However, due to the incapability of software to accurately determine chromatographic peak heights/areas for features with poor chromatographic peak shape, automated data processing in untargeted metabolomics faces additional quantitative variation (i.e., computational variation) besides the well-recognized analytical and biological variations. In this work, using multiple biological samples, we investigated how experimental factors, including sample concentrations, LC separation columns, and data processing programs, contribute to computational variation. For example, we found that the peak height (PH)-based quantification is more precise when MS-DIAL was used for data processing. We further systematically compared the different patterns of computational variation between PH- and peak area (PA)-based quantitative measurements. Our results suggest that the magnitude of computational variation is highly consistent at a given concentration. Hence, we proposed a quality control (QC) sample-based correction workflow to minimize computational variation by automatically selecting PH or PA-based measurement for each intensity value. This bioinformatic solution was demonstrated in a metabolomic comparison of leukemia patients before and after chemotherapy. Our novel workflow can be effectively applied on 652 out of 915 metabolic features, and over 31% (206 out of 652) of corrected features showed distinctly changed statistical significance. Overall, this work highlights computational variation, a considerable but underinvestigated quantitative variability in omics-scale quantitative analyses. In addition, the proposed bioinformatic solution can minimize computational variation, thus providing a more confident statistical comparison among biological groups in quantitative metabolomics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
拼搏问薇完成签到 ,获得积分10
12秒前
13秒前
20秒前
35秒前
supermaltose完成签到,获得积分10
40秒前
40秒前
yyds完成签到,获得积分0
40秒前
52秒前
55秒前
科研狗的春天完成签到 ,获得积分10
58秒前
59秒前
1分钟前
1分钟前
輕瘋发布了新的文献求助10
1分钟前
輕瘋完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
葛力完成签到,获得积分10
2分钟前
2分钟前
2分钟前
ZTiamT发布了新的文献求助200
2分钟前
2分钟前
3分钟前
3分钟前
ZTiamT发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
FashionBoy应助忧郁菲鹰采纳,获得30
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732432
求助须知:如何正确求助?哪些是违规求助? 5339270
关于积分的说明 15322228
捐赠科研通 4878002
什么是DOI,文献DOI怎么找? 2620807
邀请新用户注册赠送积分活动 1570003
关于科研通互助平台的介绍 1526689