Computational Variation: An Underinvestigated Quantitative Variability Caused by Automated Data Processing in Untargeted Metabolomics

代谢组学 工作流程 化学 变化(天文学) 变异系数 计算机科学 样品(材料) 样本量测定 生物系统 色谱法 统计 数据库 数学 天体物理学 生物 物理
作者
Huaxu Yu,Ying Chen,Tao Huan
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:93 (25): 8719-8728 被引量:17
标识
DOI:10.1021/acs.analchem.0c03381
摘要

Computational tools are commonly used in untargeted metabolomics to automatically extract metabolic features from liquid chromatography-mass spectrometry (LC-MS) raw data. However, due to the incapability of software to accurately determine chromatographic peak heights/areas for features with poor chromatographic peak shape, automated data processing in untargeted metabolomics faces additional quantitative variation (i.e., computational variation) besides the well-recognized analytical and biological variations. In this work, using multiple biological samples, we investigated how experimental factors, including sample concentrations, LC separation columns, and data processing programs, contribute to computational variation. For example, we found that the peak height (PH)-based quantification is more precise when MS-DIAL was used for data processing. We further systematically compared the different patterns of computational variation between PH- and peak area (PA)-based quantitative measurements. Our results suggest that the magnitude of computational variation is highly consistent at a given concentration. Hence, we proposed a quality control (QC) sample-based correction workflow to minimize computational variation by automatically selecting PH or PA-based measurement for each intensity value. This bioinformatic solution was demonstrated in a metabolomic comparison of leukemia patients before and after chemotherapy. Our novel workflow can be effectively applied on 652 out of 915 metabolic features, and over 31% (206 out of 652) of corrected features showed distinctly changed statistical significance. Overall, this work highlights computational variation, a considerable but underinvestigated quantitative variability in omics-scale quantitative analyses. In addition, the proposed bioinformatic solution can minimize computational variation, thus providing a more confident statistical comparison among biological groups in quantitative metabolomics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Skyllne完成签到 ,获得积分10
刚刚
JamesPei应助森林采纳,获得10
1秒前
1秒前
3秒前
墨与白完成签到,获得积分10
4秒前
Blummer完成签到,获得积分10
4秒前
自然谷兰完成签到,获得积分10
5秒前
5秒前
呆萌芙蓉完成签到 ,获得积分10
6秒前
aster应助Marshall采纳,获得50
8秒前
森林完成签到,获得积分10
8秒前
apparate完成签到,获得积分10
8秒前
jiaovo发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助50
10秒前
爱科研的小虞完成签到 ,获得积分10
10秒前
111111发布了新的文献求助10
12秒前
12秒前
liliAnh完成签到 ,获得积分10
13秒前
13秒前
犹豫花卷完成签到 ,获得积分10
15秒前
li发布了新的文献求助10
18秒前
18秒前
18秒前
TCB完成签到,获得积分10
20秒前
繁星完成签到,获得积分10
21秒前
猪猪hero完成签到,获得积分0
23秒前
繁星发布了新的文献求助10
24秒前
科研大佬的路上完成签到 ,获得积分10
27秒前
举个栗子8完成签到 ,获得积分10
29秒前
wuxin完成签到,获得积分10
29秒前
欢喜可愁完成签到 ,获得积分10
31秒前
左一酱完成签到 ,获得积分10
32秒前
自信疾完成签到,获得积分10
33秒前
一路有你完成签到 ,获得积分10
35秒前
旷意完成签到,获得积分10
35秒前
zikk233完成签到 ,获得积分10
36秒前
yumi完成签到,获得积分10
40秒前
Yang22完成签到,获得积分10
41秒前
Hou完成签到,获得积分10
42秒前
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789508
求助须知:如何正确求助?哪些是违规求助? 5720453
关于积分的说明 15474748
捐赠科研通 4917316
什么是DOI,文献DOI怎么找? 2646909
邀请新用户注册赠送积分活动 1594535
关于科研通互助平台的介绍 1549079