Computational Variation: An Underinvestigated Quantitative Variability Caused by Automated Data Processing in Untargeted Metabolomics

代谢组学 工作流程 化学 变化(天文学) 变异系数 计算机科学 样品(材料) 样本量测定 生物系统 色谱法 统计 数据库 数学 天体物理学 生物 物理
作者
Huaxu Yu,Ying Chen,Tao Huan
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:93 (25): 8719-8728 被引量:17
标识
DOI:10.1021/acs.analchem.0c03381
摘要

Computational tools are commonly used in untargeted metabolomics to automatically extract metabolic features from liquid chromatography-mass spectrometry (LC-MS) raw data. However, due to the incapability of software to accurately determine chromatographic peak heights/areas for features with poor chromatographic peak shape, automated data processing in untargeted metabolomics faces additional quantitative variation (i.e., computational variation) besides the well-recognized analytical and biological variations. In this work, using multiple biological samples, we investigated how experimental factors, including sample concentrations, LC separation columns, and data processing programs, contribute to computational variation. For example, we found that the peak height (PH)-based quantification is more precise when MS-DIAL was used for data processing. We further systematically compared the different patterns of computational variation between PH- and peak area (PA)-based quantitative measurements. Our results suggest that the magnitude of computational variation is highly consistent at a given concentration. Hence, we proposed a quality control (QC) sample-based correction workflow to minimize computational variation by automatically selecting PH or PA-based measurement for each intensity value. This bioinformatic solution was demonstrated in a metabolomic comparison of leukemia patients before and after chemotherapy. Our novel workflow can be effectively applied on 652 out of 915 metabolic features, and over 31% (206 out of 652) of corrected features showed distinctly changed statistical significance. Overall, this work highlights computational variation, a considerable but underinvestigated quantitative variability in omics-scale quantitative analyses. In addition, the proposed bioinformatic solution can minimize computational variation, thus providing a more confident statistical comparison among biological groups in quantitative metabolomics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江屿发布了新的文献求助10
1秒前
1秒前
神不搞科研完成签到,获得积分10
2秒前
Epiphany完成签到 ,获得积分10
2秒前
yang完成签到,获得积分10
2秒前
wanci应助机智的曼易采纳,获得10
2秒前
酷酷的冰真应助CQ采纳,获得20
2秒前
今后应助健壮的面包采纳,获得10
3秒前
3秒前
3秒前
雷小仙儿发布了新的文献求助10
3秒前
3秒前
领导范儿应助runner采纳,获得10
4秒前
4秒前
时倾完成签到,获得积分20
4秒前
4秒前
迷人书蝶完成签到,获得积分10
5秒前
5秒前
5秒前
青山发布了新的文献求助10
6秒前
时倾发布了新的文献求助10
7秒前
Owen应助jj采纳,获得10
7秒前
有魅力的傲蕾完成签到 ,获得积分10
8秒前
8秒前
风清扬发布了新的文献求助10
8秒前
panpan发布了新的文献求助10
9秒前
小吕小吕发布了新的文献求助10
9秒前
cc完成签到,获得积分10
9秒前
1762120完成签到,获得积分10
9秒前
妮可完成签到 ,获得积分20
10秒前
安静的雨完成签到,获得积分10
10秒前
10秒前
10秒前
杜四十929完成签到,获得积分10
10秒前
深情安青应助张爱学采纳,获得10
11秒前
11秒前
11秒前
hkh发布了新的文献求助10
11秒前
11秒前
12秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961675
求助须知:如何正确求助?哪些是违规求助? 3507998
关于积分的说明 11139238
捐赠科研通 3240579
什么是DOI,文献DOI怎么找? 1791017
邀请新用户注册赠送积分活动 872696
科研通“疑难数据库(出版商)”最低求助积分说明 803326