Deep learning-based amyloid PET positivity classification model in the Alzheimer’s disease continuum by using 2-[18F]FDG PET

医学 痴呆 神经影像学 体素 人工智能 正电子发射断层摄影术 深度学习 置信区间 标准摄取值 Pet成像 疾病 核医学 机器学习 内科学 放射科 计算机科学 精神科
作者
Su Hong Kim,Peter Lee,Kyeong Taek Oh,Min Soo Byun,Dahyun Yi,Jun Ho Lee,Yu Kyeong Kim,Byoung Seok Ye,Mijin Yun,Dong Young Lee,Yong Jeong
出处
期刊:EJNMMI research [Springer Nature]
卷期号:11 (1) 被引量:27
标识
DOI:10.1186/s13550-021-00798-3
摘要

Abstract Background Considering the limited accessibility of amyloid position emission tomography (PET) in patients with dementia, we proposed a deep learning (DL)-based amyloid PET positivity classification model from PET images with 2-deoxy-2-[fluorine-18]fluoro-D-glucose (2-[ 18 F]FDG). Methods We used 2-[ 18 F]FDG PET datasets from the Alzheimer's Disease Neuroimaging Initiative and Korean Brain Aging Study for the Early diagnosis and prediction of Alzheimer’s disease for model development. Moreover, we used an independent dataset from another hospital. A 2.5-D deep learning architecture was constructed using 291 submodules and three axes images as the input. We conducted the voxel-wise analysis to assess the regions with substantial differences in glucose metabolism between the amyloid PET-positive and PET-negative participants. This facilitated an understanding of the deep model classification. In addition, we compared these regions with the classification probability from the submodules. Results There were 686 out of 1433 (47.9%) and 50 out of 100 (50%) amyloid PET-positive participants in the training and internal validation datasets and the external validation datasets, respectively. With 50 times iterations of model training and validation, the model achieved an AUC of 0.811 (95% confidence interval (CI) of 0.803–0.819) and 0.798 (95% CI, 0.789–0.807) on the internal and external validation datasets, respectively. The area under the curve (AUC) was 0.860 when tested with the model with the highest value (0.864) on the external validation dataset. Moreover, it had 75.0% accuracy, 76.0% sensitivity, 74.0% specificity, and 75.0% F1-score. We found an overlap between the regions within the default mode network, thus generating high classification values. Conclusion The proposed model based on the 2-[ 18 F]FDG PET imaging data and a DL framework might successfully classify amyloid PET positivity in clinical practice, without performing amyloid PET, which have limited accessibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
fff完成签到,获得积分10
2秒前
东方浩天发布了新的文献求助10
5秒前
dingxiaosong完成签到,获得积分10
6秒前
Ruilin完成签到 ,获得积分10
7秒前
小黑发布了新的文献求助30
7秒前
9秒前
南玉不咕咕完成签到,获得积分10
16秒前
111完成签到 ,获得积分10
17秒前
17秒前
iY完成签到 ,获得积分10
17秒前
乐糖完成签到 ,获得积分10
20秒前
bkagyin应助初心不变采纳,获得10
24秒前
桐桐应助Kakoala采纳,获得30
26秒前
27秒前
Yann完成签到,获得积分10
28秒前
cdh发布了新的文献求助10
32秒前
壮观小鸭子完成签到 ,获得积分10
35秒前
35秒前
美好皮皮虾完成签到,获得积分10
39秒前
精则养神发布了新的文献求助10
40秒前
小小完成签到,获得积分10
41秒前
kento完成签到,获得积分0
42秒前
所所应助美好皮皮虾采纳,获得10
47秒前
七柚完成签到 ,获得积分10
48秒前
48秒前
善学以致用应助小小采纳,获得10
48秒前
Yann发布了新的文献求助10
49秒前
深情的若冰完成签到,获得积分10
50秒前
指纹抒写年轮完成签到,获得积分10
51秒前
cdh完成签到,获得积分10
52秒前
53秒前
53秒前
shen5920完成签到,获得积分10
56秒前
59秒前
WMZ完成签到 ,获得积分10
1分钟前
早早完成签到 ,获得积分10
1分钟前
macchiato发布了新的文献求助10
1分钟前
精则养神完成签到,获得积分10
1分钟前
yif完成签到 ,获得积分10
1分钟前
高分求助中
Востребованный временем 2500
Kidney Transplantation: Principles and Practice 1000
The Restraining Hand: Captivity for Christ in China 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Encyclopedia of Mental Health Reference Work 300
脑血管病 300
The Unity of the Common Law 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3372241
求助须知:如何正确求助?哪些是违规求助? 2990100
关于积分的说明 8738693
捐赠科研通 2673431
什么是DOI,文献DOI怎么找? 1464527
科研通“疑难数据库(出版商)”最低求助积分说明 677566
邀请新用户注册赠送积分活动 668978