Soil Nutrient Estimation and Mapping in Farmland Based on UAV Imaging Spectrometry

高光谱成像 支持向量机 粒子群优化 偏最小二乘回归 极限学习机 特征选择 计算机科学 环境科学 人工智能 模式识别(心理学) 遥感 算法 人工神经网络 机器学习 地质学
作者
Xiaoyu Yang,Nisha Bao,Wenwen Li,Shanjun Liu,Yanhua Fu,Yachun Mao
出处
期刊:Sensors [MDPI AG]
卷期号:21 (11): 3919-3919 被引量:20
标识
DOI:10.3390/s21113919
摘要

Soil nutrient is one of the most important properties for improving farmland quality and product. Imaging spectrometry has the potential for rapid acquisition and real-time monitoring of soil characteristics. This study aims to explore the preprocessing and modeling methods of hyperspectral images obtained from an unmanned aerial vehicle (UAV) platform for estimating the soil organic matter (SOM) and soil total nitrogen (STN) in farmland. The results showed that: (1) Multiplicative Scattering Correction (MSC) performed better in reducing image scattering noise than Standard Normal Variate (SNV) transformation or spectral derivatives, and it yielded a result with higher correlation and lower signal-to-noise ratio; (2) The proposed feature selection method combining Successive Projections Algorithm (SPA) and Competitive Adaptive Reweighted Sampling algorithm (CARS), could provide selective preference for hyperspectral bands. Exploiting this method, 24 and 22 feature bands were selected for SOM and STN estimation, respectively; (3) The particle swarm optimization (PSO) algorithm was employed to obtain optimized input weights and bias values of the extreme learning machine (ELM) model for more accurate prediction of SOM and STN. The improved PSO-ELM model based on the selected preference bands achieved higher prediction accuracy (R2 of 0.73 and RPD of 1.91 for SOM, R2 of 0.63, and RPD of 1.53 for STN) than support vector machine (SVM), partial least squares regression (PLSR), and the ELM model. This study provides an important guideline for monitoring soil nutrient for precision agriculture with imaging spectrometry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yar应助博修采纳,获得10
3秒前
4秒前
Gengar发布了新的文献求助10
4秒前
称心的白羊关注了科研通微信公众号
5秒前
几两发布了新的文献求助10
5秒前
jiangbei完成签到,获得积分10
6秒前
7秒前
9秒前
热心市民小红花应助linxc07采纳,获得10
9秒前
9秒前
学术潘完成签到,获得积分10
11秒前
12秒前
彭于彦祖应助124332采纳,获得30
12秒前
Gengar完成签到,获得积分10
13秒前
善学以致用应助周小花采纳,获得10
13秒前
14秒前
zaixiapaohuiyi完成签到,获得积分10
15秒前
yema发布了新的文献求助10
16秒前
今后应助舒心的雨双采纳,获得10
17秒前
17秒前
清茶韵心发布了新的文献求助10
17秒前
18秒前
zq发布了新的文献求助10
18秒前
夏林完成签到,获得积分10
19秒前
19秒前
19秒前
可爱的函函应助淡然严青采纳,获得10
20秒前
Xiaoshen发布了新的文献求助10
22秒前
22秒前
23秒前
roger33发布了新的文献求助10
24秒前
玖梦发布了新的文献求助10
24秒前
orixero应助打我呀采纳,获得10
24秒前
25秒前
sadascaqwqw完成签到 ,获得积分10
25秒前
妖哥发布了新的文献求助10
25秒前
25秒前
小杨完成签到,获得积分10
25秒前
周小花发布了新的文献求助10
28秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3264175
求助须知:如何正确求助?哪些是违规求助? 2904362
关于积分的说明 8330033
捐赠科研通 2574592
什么是DOI,文献DOI怎么找? 1399202
科研通“疑难数据库(出版商)”最低求助积分说明 654449
邀请新用户注册赠送积分活动 633117