Soil Nutrient Estimation and Mapping in Farmland Based on UAV Imaging Spectrometry

高光谱成像 支持向量机 粒子群优化 偏最小二乘回归 极限学习机 特征选择 计算机科学 环境科学 人工智能 模式识别(心理学) 遥感 算法 人工神经网络 机器学习 地质学
作者
Xiaoyu Yang,Nisha Bao,Wenwen Li,Shanjun Liu,Yanhua Fu,Yachun Mao
出处
期刊:Sensors [MDPI AG]
卷期号:21 (11): 3919-3919 被引量:20
标识
DOI:10.3390/s21113919
摘要

Soil nutrient is one of the most important properties for improving farmland quality and product. Imaging spectrometry has the potential for rapid acquisition and real-time monitoring of soil characteristics. This study aims to explore the preprocessing and modeling methods of hyperspectral images obtained from an unmanned aerial vehicle (UAV) platform for estimating the soil organic matter (SOM) and soil total nitrogen (STN) in farmland. The results showed that: (1) Multiplicative Scattering Correction (MSC) performed better in reducing image scattering noise than Standard Normal Variate (SNV) transformation or spectral derivatives, and it yielded a result with higher correlation and lower signal-to-noise ratio; (2) The proposed feature selection method combining Successive Projections Algorithm (SPA) and Competitive Adaptive Reweighted Sampling algorithm (CARS), could provide selective preference for hyperspectral bands. Exploiting this method, 24 and 22 feature bands were selected for SOM and STN estimation, respectively; (3) The particle swarm optimization (PSO) algorithm was employed to obtain optimized input weights and bias values of the extreme learning machine (ELM) model for more accurate prediction of SOM and STN. The improved PSO-ELM model based on the selected preference bands achieved higher prediction accuracy (R2 of 0.73 and RPD of 1.91 for SOM, R2 of 0.63, and RPD of 1.53 for STN) than support vector machine (SVM), partial least squares regression (PLSR), and the ELM model. This study provides an important guideline for monitoring soil nutrient for precision agriculture with imaging spectrometry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
卡卡发布了新的文献求助10
1秒前
1秒前
3秒前
Jasper应助刘芸芸采纳,获得10
4秒前
m彬m彬完成签到 ,获得积分10
4秒前
5秒前
自信鑫鹏完成签到,获得积分10
5秒前
HYH完成签到,获得积分10
5秒前
Harish完成签到,获得积分10
6秒前
研友_851KE8发布了新的文献求助10
6秒前
6秒前
一段乐多发布了新的文献求助10
6秒前
6秒前
华仔完成签到,获得积分10
6秒前
刘百慧完成签到,获得积分10
6秒前
6秒前
Wyan发布了新的文献求助80
8秒前
成就映秋发布了新的文献求助30
8秒前
科研通AI2S应助坤坤采纳,获得10
8秒前
整齐芷文完成签到,获得积分10
9秒前
科研通AI5应助小马哥36采纳,获得10
9秒前
灵巧荆发布了新的文献求助10
10秒前
小二郎应助侦察兵采纳,获得10
10秒前
爆米花完成签到 ,获得积分10
10秒前
今后应助Evan123采纳,获得10
10秒前
凤凰之玉完成签到 ,获得积分10
11秒前
shi hui应助冬瓜炖排骨采纳,获得10
11秒前
12秒前
dyh6802发布了新的文献求助10
12秒前
冷静雅青发布了新的文献求助10
12秒前
CipherSage应助猪猪hero采纳,获得10
13秒前
领导范儿应助不凡采纳,获得30
13秒前
顾矜应助坚定的亦绿采纳,获得10
14秒前
14秒前
yu完成签到,获得积分10
14秒前
Chris完成签到,获得积分10
15秒前
cookie发布了新的文献求助10
16秒前
胖仔完成签到,获得积分10
16秒前
Chan0501完成签到,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794