Soil Nutrient Estimation and Mapping in Farmland Based on UAV Imaging Spectrometry

高光谱成像 支持向量机 粒子群优化 偏最小二乘回归 极限学习机 特征选择 计算机科学 环境科学 人工智能 模式识别(心理学) 遥感 算法 人工神经网络 机器学习 地质学
作者
Xiaoyu Yang,Nisha Bao,Wenwen Li,Shanjun Liu,Yanhua Fu,Yachun Mao
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:21 (11): 3919-3919 被引量:20
标识
DOI:10.3390/s21113919
摘要

Soil nutrient is one of the most important properties for improving farmland quality and product. Imaging spectrometry has the potential for rapid acquisition and real-time monitoring of soil characteristics. This study aims to explore the preprocessing and modeling methods of hyperspectral images obtained from an unmanned aerial vehicle (UAV) platform for estimating the soil organic matter (SOM) and soil total nitrogen (STN) in farmland. The results showed that: (1) Multiplicative Scattering Correction (MSC) performed better in reducing image scattering noise than Standard Normal Variate (SNV) transformation or spectral derivatives, and it yielded a result with higher correlation and lower signal-to-noise ratio; (2) The proposed feature selection method combining Successive Projections Algorithm (SPA) and Competitive Adaptive Reweighted Sampling algorithm (CARS), could provide selective preference for hyperspectral bands. Exploiting this method, 24 and 22 feature bands were selected for SOM and STN estimation, respectively; (3) The particle swarm optimization (PSO) algorithm was employed to obtain optimized input weights and bias values of the extreme learning machine (ELM) model for more accurate prediction of SOM and STN. The improved PSO-ELM model based on the selected preference bands achieved higher prediction accuracy (R2 of 0.73 and RPD of 1.91 for SOM, R2 of 0.63, and RPD of 1.53 for STN) than support vector machine (SVM), partial least squares regression (PLSR), and the ELM model. This study provides an important guideline for monitoring soil nutrient for precision agriculture with imaging spectrometry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wang35发布了新的文献求助60
1秒前
优雅的千凝完成签到,获得积分10
1秒前
Accept2024完成签到,获得积分10
3秒前
背后海亦应助璇璇采纳,获得20
3秒前
方QL发布了新的文献求助10
3秒前
wang完成签到,获得积分0
5秒前
小陆完成签到,获得积分10
6秒前
听雪冬眠完成签到,获得积分10
9秒前
擦撒擦擦发布了新的文献求助10
11秒前
踏实采波完成签到,获得积分10
13秒前
传奇3应助方QL采纳,获得10
15秒前
15秒前
orange完成签到,获得积分10
18秒前
20秒前
zzzzz完成签到,获得积分10
22秒前
Tarius发布了新的文献求助10
23秒前
24秒前
eslic完成签到,获得积分20
25秒前
Lucas应助Bkpp采纳,获得10
25秒前
26秒前
27秒前
深情的雁露完成签到 ,获得积分10
28秒前
29秒前
Faded完成签到 ,获得积分10
29秒前
田茂青完成签到,获得积分10
30秒前
南海神尼完成签到,获得积分10
30秒前
南淮发布了新的文献求助10
31秒前
31秒前
平淡的依白完成签到,获得积分20
31秒前
IvyLee发布了新的文献求助10
32秒前
34秒前
卢彦冬完成签到,获得积分10
34秒前
dddd完成签到,获得积分10
35秒前
温冰雪完成签到,获得积分10
38秒前
大秋哥哈拉少完成签到,获得积分10
39秒前
光亮代玉完成签到 ,获得积分10
40秒前
41秒前
42秒前
JianYugen完成签到,获得积分0
44秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950988
求助须知:如何正确求助?哪些是违规求助? 3496397
关于积分的说明 11081817
捐赠科研通 3226886
什么是DOI,文献DOI怎么找? 1784005
邀请新用户注册赠送积分活动 868114
科研通“疑难数据库(出版商)”最低求助积分说明 800997