Automated ASD detection using hybrid deep lightweight features extracted from EEG signals

光谱图 人工智能 计算机科学 支持向量机 模式识别(心理学) 脑电图 特征提取 判别式 局部二进制模式 自闭症 特征(语言学) 图像(数学) 哲学 发展心理学 精神科 直方图 语言学 心理学
作者
Mehmet Bayğın,Şengül Doğan,Türker Tuncer,Prabal Datta Barua,Oliver Faust,N. Arunkumar,Enas Abdulhay,Elizabeth E. Palmer,U. Rajendra Acharya
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:134: 104548-104548 被引量:107
标识
DOI:10.1016/j.compbiomed.2021.104548
摘要

Background Autism spectrum disorder is a common group of conditions affecting about one in 54 children. Electroencephalogram (EEG) signals from children with autism have a common morphological pattern which makes them distinguishable from normal EEG. We have used this type of signal to design and implement an automated autism detection model. Materials and method We propose a hybrid lightweight deep feature extractor to obtain high classification performance. The system was designed and tested with a big EEG dataset that contained signals from autism patients and normal controls. (i) A new signal to image conversion model is presented in this paper. In this work, features are extracted from EEG signal using one-dimensional local binary pattern (1D_LBP) and the generated features are utilized as input of the short time Fourier transform (STFT) to generate spectrogram images. (ii) The deep features of the generated spectrogram images are extracted using a combination of pre-trained MobileNetV2, ShuffleNet, and SqueezeNet models. This method is named hybrid deep lightweight feature generator. (iii) A two-layered ReliefF algorithm is used for feature ranking and feature selection. (iv) The most discriminative features are fed to various shallow classifiers, developed using a 10-fold cross-validation strategy for automated autism detection. Results A support vector machine (SVM) classifier reached 96.44% accuracy based on features from the proposed model. Conclusions The results strongly indicate that the proposed hybrid deep lightweight feature extractor is suitable for autism detection using EEG signals. The model is ready to serve as part of an adjunct tool that aids neurologists during autism diagnosis in medical centers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
就这发布了新的文献求助10
1秒前
赘婿应助西陆采纳,获得10
1秒前
能干太清发布了新的文献求助10
2秒前
Lychee关注了科研通微信公众号
3秒前
3秒前
酷波er应助木光采纳,获得10
3秒前
机灵飞珍完成签到 ,获得积分10
4秒前
Lucas应助张元东采纳,获得10
4秒前
liujy完成签到,获得积分10
4秒前
我是老大应助xmefw采纳,获得10
5秒前
晓婷婷完成签到,获得积分10
6秒前
FKHY发布了新的文献求助30
6秒前
amxl发布了新的文献求助10
6秒前
wlei发布了新的文献求助10
7秒前
YJ888发布了新的文献求助10
7秒前
7秒前
orixero应助清新的安波采纳,获得10
7秒前
今后应助fouli采纳,获得10
7秒前
8秒前
Ava应助GAGAGAGA采纳,获得10
9秒前
9秒前
wushuping完成签到,获得积分10
10秒前
Ava应助晓婷婷采纳,获得10
11秒前
liujy发布了新的文献求助10
11秒前
上官若男应助小鱼鱼Fish采纳,获得30
11秒前
ajiang完成签到 ,获得积分10
12秒前
kilion发布了新的文献求助10
13秒前
西陆发布了新的文献求助10
13秒前
xinbowey发布了新的文献求助10
14秒前
Hao关闭了Hao文献求助
14秒前
Lychee发布了新的文献求助10
14秒前
安静完成签到,获得积分10
14秒前
14秒前
15秒前
16完成签到 ,获得积分10
15秒前
李爱国应助白樱恋曲采纳,获得10
15秒前
15秒前
15秒前
mumu完成签到,获得积分20
16秒前
17秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Geotechnical characterization of slope movements 500
Individualized positive end-expiratory pressure in laparoscopic surgery: a randomized controlled trial 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3752979
求助须知:如何正确求助?哪些是违规求助? 3296520
关于积分的说明 10094410
捐赠科研通 3011359
什么是DOI,文献DOI怎么找? 1653739
邀请新用户注册赠送积分活动 788416
科研通“疑难数据库(出版商)”最低求助积分说明 752812