Driver behavior detection via adaptive spatial attention mechanism

子网 判别式 分类器(UML) 模式识别(心理学) 特征提取 计算机科学 特征(语言学) 人工智能 计算机安全 语言学 哲学
作者
Lei Zhao,Fei Yang,Lingguo Bu,Han Su,Guoxin Zhang,Ying Luo
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:48: 101280-101280 被引量:34
标识
DOI:10.1016/j.aei.2021.101280
摘要

Drivers still play an important role in driving safety despite the presence of driverless vehicles. Over the last few years, millions of deaths are due to traffic accidents, and more than half of these accidents worldwide are caused by distracted driving. Therefore, driver behavior detection during driving is crucial. A novel driver behavior detection system based on the adaptive spatial attention mechanism is proposed in this study. This system realizes the extraction of adaptive discriminative spatial regions of driver images by cascading multiple attention-based convolution neural networks. Feature representation in each subnetwork is extracted from the output layer, and the discriminative region of the input image is cropped using class activation maps. The obtained region is then fed into the next subnetwork to highlight important region for improving the system performance. The model starts from full images and iteratively crops the region adaptively from coarse to fine to extract the feature representation at multiscales. Finally, the k-nearest neighbor classifier is applied to classify the cascaded multiscale features and obtain the category of driver behavior. The systems are evaluated on a driver behavior recognition database captured in actual driving environments. Experimental results indicate that our systems can achieve superior recognition performance to other state-of-the-art methods and can run in real-time with simplified structure and model in our platform.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
西米露完成签到,获得积分10
1秒前
在水一方应助大方紫寒采纳,获得10
2秒前
2秒前
雪白凡双完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
优雅的听兰完成签到,获得积分10
4秒前
suniverse完成签到,获得积分10
5秒前
跳跃笑旋完成签到,获得积分10
5秒前
雪白凡双发布了新的文献求助10
6秒前
无辜绿竹发布了新的文献求助10
6秒前
小蘑菇应助lili采纳,获得10
7秒前
7秒前
8秒前
单纯的电灯胆完成签到,获得积分20
8秒前
8秒前
简单的大哥完成签到,获得积分10
11秒前
小老头发布了新的文献求助10
11秒前
11秒前
喜悦若颜发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
Shihan完成签到,获得积分10
13秒前
14秒前
DDd完成签到 ,获得积分10
14秒前
无辜绿竹完成签到,获得积分20
15秒前
15秒前
15秒前
17秒前
18秒前
89757发布了新的文献求助10
18秒前
19秒前
21秒前
共享精神应助edjtzlz采纳,获得10
21秒前
大方紫寒完成签到,获得积分10
21秒前
22秒前
niNe3YUE应助优雅的听兰采纳,获得10
22秒前
奥特曼发布了新的文献求助10
23秒前
lili发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5713547
求助须知:如何正确求助?哪些是违规求助? 5216427
关于积分的说明 15271286
捐赠科研通 4865285
什么是DOI,文献DOI怎么找? 2611992
邀请新用户注册赠送积分活动 1562188
关于科研通互助平台的介绍 1519390