Driver behavior detection via adaptive spatial attention mechanism

子网 判别式 分类器(UML) 模式识别(心理学) 特征提取 计算机科学 特征(语言学) 人工智能 计算机安全 语言学 哲学
作者
Lei Zhao,Fei Yang,Lingguo Bu,Han Su,Guoxin Zhang,Ying Luo
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:48: 101280-101280 被引量:34
标识
DOI:10.1016/j.aei.2021.101280
摘要

Drivers still play an important role in driving safety despite the presence of driverless vehicles. Over the last few years, millions of deaths are due to traffic accidents, and more than half of these accidents worldwide are caused by distracted driving. Therefore, driver behavior detection during driving is crucial. A novel driver behavior detection system based on the adaptive spatial attention mechanism is proposed in this study. This system realizes the extraction of adaptive discriminative spatial regions of driver images by cascading multiple attention-based convolution neural networks. Feature representation in each subnetwork is extracted from the output layer, and the discriminative region of the input image is cropped using class activation maps. The obtained region is then fed into the next subnetwork to highlight important region for improving the system performance. The model starts from full images and iteratively crops the region adaptively from coarse to fine to extract the feature representation at multiscales. Finally, the k-nearest neighbor classifier is applied to classify the cascaded multiscale features and obtain the category of driver behavior. The systems are evaluated on a driver behavior recognition database captured in actual driving environments. Experimental results indicate that our systems can achieve superior recognition performance to other state-of-the-art methods and can run in real-time with simplified structure and model in our platform.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助玖Nine采纳,获得10
2秒前
2秒前
bkagyin应助迷路千青采纳,获得30
3秒前
federish完成签到 ,获得积分10
3秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
YamDaamCaa应助科研通管家采纳,获得30
5秒前
5秒前
Akim应助科研通管家采纳,获得10
5秒前
Rondab应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
Rondab应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
Rondab应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
Rondab应助科研通管家采纳,获得10
5秒前
5秒前
端庄的蜗牛完成签到,获得积分10
7秒前
陶醉的熊完成签到,获得积分10
9秒前
9秒前
cocolu给cocolu的求助进行了留言
12秒前
SciGPT应助八森木采纳,获得10
12秒前
向日葵发布了新的文献求助10
13秒前
太阳完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
17秒前
book卟完成签到 ,获得积分10
17秒前
完美世界应助qqqq采纳,获得10
20秒前
乐乐应助虚幻的不愁采纳,获得10
21秒前
21秒前
Camellia完成签到,获得积分10
22秒前
23秒前
今天学习了吗完成签到 ,获得积分10
24秒前
XFaning完成签到 ,获得积分20
27秒前
27秒前
imkhun1021发布了新的文献求助10
29秒前
丘比特应助小小技术工采纳,获得10
30秒前
米多奇完成签到 ,获得积分10
31秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979662
求助须知:如何正确求助?哪些是违规求助? 3523636
关于积分的说明 11218202
捐赠科研通 3261164
什么是DOI,文献DOI怎么找? 1800473
邀请新用户注册赠送积分活动 879103
科研通“疑难数据库(出版商)”最低求助积分说明 807167