Modeling the Specific Surface Area of Doped Spinel Ferrite Nanomaterials Using Hybrid Intelligent Computational Method

材料科学 纳米材料 尖晶石 铁氧体(磁铁) 兴奋剂 比表面积 纳米技术 响应面法 光电子学 计算机科学 复合材料 冶金 机器学习 催化作用 生物化学 化学
作者
Taoreed O. Owolabi,Tawfik A. Saleh,Olubosede Olusayo,Miloud Souiyah,Oluwatoba Emmanuel Oyeneyin
出处
期刊:Journal of Nanomaterials [Hindawi Publishing Corporation]
卷期号:2021: 1-13 被引量:13
标识
DOI:10.1155/2021/9677423
摘要

Spinel ferrites nanomaterials are magnetic semiconductors with excellent chemical, magnetic, electrical, and optical properties which have rendered the materials useful in many technological driven applications such as solar hydrogen production, data storage, magnetic sensing, converters, inductors, spintronics, and catalysts. The surface area of these nanomaterials contributes significantly to their targeted applications as well as the observed physical and chemical features. Experimental doping has shown a great potential in enhancing and tuning the specific surface area of spinel ferrite nanomaterials while the attributed experimental challenges call for viable theoretical model that can estimate the surface area of doped spinel ferrite nanomaterials with high degree of precision. This work develops stepwise regression (STWR) and hybrid genetic algorithm-based support vector regression (GBSVR) intelligent model for estimating specific surface area of doped spinel ferrite nanomaterials using lattice parameter and the size of nanoparticle as descriptors to the models. The developed hybrid GBSVR model performs better than STWR model with the performance improvement of 7.51% and 22.68%, respectively, using correlation coefficient and root mean square error as performance metrics when validated with experimentally measured specific surface area of doped spinel ferrite nanomaterials. The developed GBSVR model investigates the influence of nickel, yttrium, and lanthanum nanoparticles on the specific surface area of different classes of spinel ferrite nanomaterials, and the obtained results agree excellently well with the measured values. The accuracy and precision characterizing the developed model would be of immense importance in enhancing specific surface area of doped spinel ferrite nanomaterial prediction with circumvention of experimental stress coupled with reduced cost.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
自建完成签到,获得积分10
1秒前
DiviO_完成签到 ,获得积分10
3秒前
4秒前
5秒前
程程发布了新的文献求助10
6秒前
zhangyidian应助倪笙继采纳,获得10
6秒前
7秒前
7秒前
liuyuanyuan发布了新的文献求助10
10秒前
闪闪的妙竹完成签到 ,获得积分10
10秒前
DiviO_发布了新的文献求助10
11秒前
MRM发布了新的文献求助10
12秒前
12秒前
15秒前
在水一方应助一米阳光采纳,获得30
16秒前
19秒前
Ww发布了新的文献求助10
19秒前
FloppyWow发布了新的文献求助10
20秒前
马博发布了新的文献求助10
21秒前
aliime发布了新的文献求助10
22秒前
Jasper应助巫马白亦采纳,获得10
24秒前
谦让水香完成签到,获得积分10
24秒前
Ww完成签到,获得积分20
26秒前
27秒前
Milktea123完成签到,获得积分10
31秒前
马博完成签到,获得积分20
31秒前
32秒前
科研通AI2S应助SEM小菜鸡采纳,获得10
35秒前
巫马白亦完成签到,获得积分10
35秒前
嘻嘻哈哈完成签到,获得积分10
36秒前
37秒前
111完成签到,获得积分10
38秒前
39秒前
wu完成签到 ,获得积分10
41秒前
54zxy完成签到,获得积分10
42秒前
蓝天发布了新的文献求助10
42秒前
orixero应助aliime采纳,获得10
43秒前
一米阳光发布了新的文献求助30
43秒前
木子完成签到,获得积分10
43秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672461
求助须知:如何正确求助?哪些是违规求助? 3228752
关于积分的说明 9781866
捐赠科研通 2939164
什么是DOI,文献DOI怎么找? 1610648
邀请新用户注册赠送积分活动 760696
科研通“疑难数据库(出版商)”最低求助积分说明 736174