Decentralized Power Allocation for MIMO-NOMA Vehicular Edge Computing Based on Deep Reinforcement Learning

强化学习 诺玛 计算机科学 GSM演进的增强数据速率 功率(物理) 多输入多输出 边缘计算 分布式计算 钢筋 人工智能 计算机网络 心理学 电信线路 社会心理学 频道(广播) 物理 量子力学
作者
Hongbiao Zhu,Qiong Wu,Xiao‐Jun Wu,Qiang Fan,Pingyi Fan,Jiangzhou Wang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (14): 12770-12782 被引量:68
标识
DOI:10.1109/jiot.2021.3138434
摘要

Vehicular edge computing (VEC) is envisioned as a promising approach to process the explosive computation tasks of vehicular user (VU). In the VEC system, each VU allocates power to process partial tasks through offloading and the remaining tasks through local execution. During the offloading, each VU adopts the multi-input multi-output and non-orthogonal multiple access (MIMO-NOMA) channel to improve the channel spectrum efficiency and capacity. However, the channel condition is uncertain due to the channel interference among VUs caused by the MIMO-NOMA channel and the time-varying path loss caused by the mobility of each VU. In addition, the task arrival of each VU is stochastic in the real world. The stochastic task arrival and uncertain channel condition affect greatly on the power consumption and latency of tasks for each VU. It is critical to design an optimal power allocation scheme considering the stochastic task arrival and channel variation to optimize the long-term reward, including the power consumption and latency in the MIMO-NOMA VEC. Different from the traditional centralized deep reinforcement learning (DRL)-based scheme, this article constructs a decentralized DRL framework to formulate the power allocation optimization problem, where the local observations are selected as the state. The deep deterministic policy gradient (DDPG) algorithm is adopted to learn the optimal power allocation scheme based on the decentralized DRL framework. Simulation results demonstrate that our proposed power allocation scheme outperforms the existing schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
韦威风完成签到,获得积分10
1秒前
请叫我风吹麦浪应助cc采纳,获得30
1秒前
所所应助Ll采纳,获得10
1秒前
阳光的道消完成签到,获得积分10
2秒前
2秒前
2秒前
豌豆射手完成签到,获得积分10
3秒前
3秒前
桑桑发布了新的文献求助10
3秒前
领导范儿应助幸福胡萝卜采纳,获得10
4秒前
明理的小甜瓜完成签到,获得积分10
5秒前
5秒前
33333完成签到,获得积分20
5秒前
5秒前
5秒前
756发布了新的文献求助10
5秒前
6秒前
科研通AI5应助GHOST采纳,获得10
6秒前
6秒前
罗实完成签到,获得积分10
7秒前
科研通AI2S应助k7采纳,获得10
7秒前
7秒前
粱自中完成签到,获得积分10
7秒前
luca发布了新的文献求助30
7秒前
7秒前
8秒前
唉呦嘿完成签到,获得积分10
8秒前
dan1029发布了新的文献求助10
9秒前
mc完成签到,获得积分10
9秒前
10秒前
zhaoyue完成签到,获得积分20
10秒前
科研通AI2S应助neil采纳,获得10
11秒前
宇宙无敌完成签到 ,获得积分10
12秒前
SY发布了新的文献求助10
12秒前
Lucas应助小田采纳,获得10
12秒前
叶飞荷发布了新的文献求助10
13秒前
13秒前
13秒前
无悔呀发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762