Decentralized Power Allocation for MIMO-NOMA Vehicular Edge Computing Based on Deep Reinforcement Learning

强化学习 诺玛 计算机科学 GSM演进的增强数据速率 功率(物理) 多输入多输出 边缘计算 分布式计算 钢筋 人工智能 计算机网络 心理学 电信线路 社会心理学 频道(广播) 物理 量子力学
作者
Hongbiao Zhu,Qiong Wu,Xiao‐Jun Wu,Qiang Fan,Pingyi Fan,Jiangzhou Wang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (14): 12770-12782 被引量:68
标识
DOI:10.1109/jiot.2021.3138434
摘要

Vehicular edge computing (VEC) is envisioned as a promising approach to process the explosive computation tasks of vehicular user (VU). In the VEC system, each VU allocates power to process partial tasks through offloading and the remaining tasks through local execution. During the offloading, each VU adopts the multi-input multi-output and non-orthogonal multiple access (MIMO-NOMA) channel to improve the channel spectrum efficiency and capacity. However, the channel condition is uncertain due to the channel interference among VUs caused by the MIMO-NOMA channel and the time-varying path loss caused by the mobility of each VU. In addition, the task arrival of each VU is stochastic in the real world. The stochastic task arrival and uncertain channel condition affect greatly on the power consumption and latency of tasks for each VU. It is critical to design an optimal power allocation scheme considering the stochastic task arrival and channel variation to optimize the long-term reward, including the power consumption and latency in the MIMO-NOMA VEC. Different from the traditional centralized deep reinforcement learning (DRL)-based scheme, this article constructs a decentralized DRL framework to formulate the power allocation optimization problem, where the local observations are selected as the state. The deep deterministic policy gradient (DDPG) algorithm is adopted to learn the optimal power allocation scheme based on the decentralized DRL framework. Simulation results demonstrate that our proposed power allocation scheme outperforms the existing schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
单纯面包发布了新的文献求助10
1秒前
TTT关闭了TTT文献求助
2秒前
3秒前
852应助小白白采纳,获得10
6秒前
shin0324完成签到,获得积分10
6秒前
狒狒完成签到,获得积分20
7秒前
8秒前
Evooolet发布了新的文献求助10
9秒前
Yu发布了新的文献求助10
10秒前
10秒前
Alin发布了新的文献求助10
11秒前
在水一方应助Zero_采纳,获得10
11秒前
LIU发布了新的文献求助10
12秒前
Orange应助武雨寒采纳,获得10
12秒前
14秒前
15秒前
15秒前
传奇3应助马夋采纳,获得10
15秒前
林亦彤发布了新的文献求助10
16秒前
TTT完成签到,获得积分10
17秒前
Evooolet完成签到,获得积分10
17秒前
大模型应助麦乐提采纳,获得10
21秒前
可飞完成签到,获得积分10
21秒前
安徒发布了新的文献求助10
21秒前
22秒前
24秒前
林亦彤完成签到,获得积分10
24秒前
25秒前
八里完成签到,获得积分10
26秒前
27秒前
马夋发布了新的文献求助10
27秒前
27秒前
28秒前
Hello应助科研通管家采纳,获得10
28秒前
28秒前
28秒前
28秒前
28秒前
28秒前
JamesPei应助科研通管家采纳,获得10
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967544
求助须知:如何正确求助?哪些是违规求助? 3512763
关于积分的说明 11165008
捐赠科研通 3247759
什么是DOI,文献DOI怎么找? 1794027
邀请新用户注册赠送积分活动 874808
科研通“疑难数据库(出版商)”最低求助积分说明 804528